Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Carla Teixeira Lopes é, atualmente, professora auxiliar no Departamento de Engenharia Informática da Faculdade de Engenharia da Universidade do Porto e investigadora sénior no INESC TEC. É doutorada (2013) em Engenharia Informática pela Faculdade de Engenharia da Universidade do Porto. Tem experiência de investigação e coordenação de trabalhos nas áreas de recuperação de informação, sistemas de gestão de dados, interação pessoa-computador, World Wide Web e análise de dados. A sua investigação atual está relacionada com recuperação de informação em saúde, com especial enfoque no desenvolvimento de ferramentas que apoiem os consumidores de saúde. 

 

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Carla Lopes
  • Cargo

    Investigador Sénior
  • Desde

    01 maio 2014
Publicações

2025

Can Llama 3 Accurately Assess Readability? A Comparative Study Using Lead Sections from Wikipedia

Autores
Rodrigues, JF; Cardoso, HL; Lopes, CT;

Publicação
RESEARCH CHALLENGES IN INFORMATION SCIENCE, RCIS 2025, PT II

Abstract
Text readability is vital for effective communication and learning, especially for those with lower information literacy. This research aims to assess Llama 3's ability to grade readability and compare its alignment with established metrics. For that purpose, we create a new dataset of article lead sections from English and Simple English Wikipedia, covering nine categories. The model is prompted to rate the readability of the texts on a grade-level scale, and an in-depth analysis of the results is conducted. While Llama 3 correlates strongly with most metrics, it may underestimate text grade levels.

2025

Evaluating Llama 3 for Text Simplification: A Study on Wikipedia Lead Sections

Autores
Rodrigues, JF; Cardoso, HL; Lopes, CT;

Publicação
COMPANION PROCEEDINGS OF THE ACM WEB CONFERENCE 2025, WWW COMPANION 2025

Abstract
Text simplification converts complex text into simpler language, improving readability and comprehension. This study evaluates the effectiveness of open-source large language models for text simplification across various categories. We created a dataset of 66,620 lead section pairs from English and Simple English Wikipedia, spanning nine categories, and tested Llama 3 for text simplification. We assessed its output for readability, simplicity, and meaning preservation. Results show improved readability, with simplification varying by category. Texts on Time were the most shortened, while Leisurerelated texts had the greatest reduction of words/characters and syllables per sentence. Meaning preservation was most effective for the Objects and Education categories.

2025

Cross-Lingual Entity Linking Using GPT Models in Radiology Abstracts

Autores
Dias, M; Lopes, CT;

Publicação
RESEARCH CHALLENGES IN INFORMATION SCIENCE, RCIS 2025, PT II

Abstract
Entity linking is an important task in medical natural language processing (NLP) for converting unstructured text into structured data for clinical analysis and semantic interoperability. However, in lower-resource languages, this task is challenging due to the limited availability of domain-specific resources. This paper explores a translation-based cross-lingual entity linking approach using GPT models, GPT-3.5 and GPT-4o, for zero-shot machine translation and entity linking with in-context learning. We evaluate our approach using a Portuguese-English parallel dataset of radiology abstracts. Our results show that chunk-level machine translation outperforms sentence-level translation. Moreover, our translationbased approach to cross-lingual entity linking of UMLS concepts outperformed the multilingual encoder method baseline. However, the in-context learning entity linking approach did not outperform a translation-based approach with a dictionary-based entity linking method.

2025

Comparative insights into semantic archival modelling: evaluating RiC-O and ArchOnto representation capabilities

Autores
Giagnolini, L; Koch, I; Tomasi, F; Teixeira Lopes, C;

Publicação
Journal of Documentation

Abstract
Purpose – This study aims to comparatively evaluate two semantic models, ArchOnto (CIDOC CRM based) and Records in Contexts Ontology (RiC-O), for archival representation within the Linked Open Data framework. The research seeks to critically analyse their ability to represent archival documents, events, activities, and provenance through the application on a case study of historical baptism records. Design/methodology/approach – The study adopted a comparative approach, utilising the two models to represent a dataset of baptism records from a Portuguese parish spanning several centuries. This involved information extraction and conversion processes, transforming XML EAD finding aids into RDF to facilitate more explicit semantic representation and analysis. Findings – The analysis revealed distinctive strengths and limitations of each semantic model, providing nuanced insights into their respective capacities for archival description. The findings guide cultural heritage institutions in selecting and implementing the most suitable semantic model for their needs and pave the way for semantic alignment between the two models. Research limitations/implications – Although the case study explored the representation of a wide range of features, potential limitations include the specific contextual constraints of parish records and the need for broader comparative studies across diverse archival contexts. Originality/value – This paper offers original insights into semantic modelling for archival representations by providing a detailed comparative analysis of two ontological approaches. It offers valuable perspectives for archivists, digital humanities researchers, and cultural heritage professionals seeking to enhance the semantic richness of archival descriptions. © 2025 Emerald Publishing Limited

2025

Real-Time Prediction of Wikipedia Articles' Quality

Autores
Moás, PM; Lopes, CT;

Publicação
Linking Theory and Practice of Digital Libraries - 29th International Conference on Theory and Practice of Digital Libraries, TPDL 2025, Tampere, Finland, September 23-26, 2025, Proceedings

Abstract
Wikipedia is the largest and most globally well-known online encyclopedia, but its collaborative nature leads to a significant disparity in article quality. In this work, we explore real-time and automatic quality assessment within Wikipedia through machine-learning. We first constructed a dataset of 36,000 English articles and 145 features, then compared the performance of multiple classification and regression algorithms and studied how the number of classes and features affects the model’s performance. The six-class experiments achieved a classifier accuracy of 64% and a mean absolute error of 0.09 in regression methods, which matches or beats most state-of-the-art approaches. Our model produces similar results on some non-English Wikipedias, but the error is slightly higher on other versions. We have also determined that the features measuring the article’s content and revision history bring the largest performance boost. © 2025 Elsevier B.V., All rights reserved.

Teses
supervisionadas

2023

ArchMine: Learning from non-machine-readable documents for additional insights

Autor
Mariana Ferreira Dias

Instituição
UP-FEUP

2023

Integration of models for linked data in cultural heritage and contributions to the FAIR principles

Autor
Inês Dias Koch

Instituição
UP-FEUP

2023

Images as data and metadata: management practices to promote Findability, Accessibility, Interoperability and Reusability of research data

Autor
Joana Patrícia de Sousa Rodrigues

Instituição
UP-FEUP

2023

Archive users, their characteristics and motivations

Autor
Luana Rodrigues Ponte

Instituição
UP-FEUP

2022

Automatic Categorization of Health-related Messages in Online Health Communities

Autor
João Paulo Gomes Torres Abelha

Instituição
UP-FEUP