Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Bruno Veloso. Completed the Mestrado integrado in Engenharia Eletrotécnica e de Computadores in 2012/10/31 by Instituto Politécnico do Porto Instituto Superior de Engenharia do Porto, Licenciatura in Engenharia Eletrotécnica e de Computadores in 2010/07/31 by Instituto Politécnico do Porto Instituto Superior de Engenharia do Porto and Doctor in Telematics Engineering in 2017/09/11 by Universidade de Vigo. Is Researcher in Instituto de Engenharia de Sistemas e Computadores Tecnologia e Ciência and Assistant Professor in Universidade do Porto Faculdade de Economia. Published 21 articles in journals. Has 19 section(s) of books and 2 book(s). Organized 5 event(s). Participated in 5 event(s). Supervised 1 MSc dissertation(s) e co-supervised 5. Has received 3 awards and/or honors. Participates and/or participated as Master Student Fellow in 1 project(s), Other in 1 project(s), PhD Student Fellow in 1 project(s) and Researcher in 4 project(s). Works in the area(s) of Engineering and Technology with emphasis on Electrotechnical Engineering, Electronics and Informatics. In their professional activities interacted with 87 collaborator(s) co-authorship of scientific papers.

Interest
Topics
Details

Details

  • Name

    Bruno Miguel Veloso
  • Role

    Senior Researcher
  • Since

    01st March 2013
003
Publications

2024

SWINN: Efficient nearest neighbor search in sliding windows using graphs

Authors
Mastelini, SM; Veloso, B; Halford, M; de Carvalho, ACPDF; Gama, J;

Publication
INFORMATION FUSION

Abstract
Nearest neighbor search (NNS) is one of the main concerns in data stream applications since similarity queries can be used in multiple scenarios. Online NNS is usually performed on a sliding window by lazily scanning every element currently stored in the window. This paper proposes Sliding Window-based Incremental Nearest Neighbors (SWINN), a graph-based online search index algorithm for speeding up NNS in potentially never-ending and dynamic data stream tasks. Our proposal broadens the application of online NNS-based solutions, as even moderately large data buffers become impractical to handle when a naive NNS strategy is selected. SWINN enables efficient handling of large data buffers by using an incremental strategy to build and update a search graph supporting any distance metric. Vertices can be added and removed from the search graph. To keep the graph reliable for search queries, lightweight graph maintenance routines are run. According to experimental results, SWINN is significantly faster than performing a naive complete scan of the data buffer while keeping competitive search recall values. We also apply SWINN to online classification and regression tasks and show that our proposal is effective against popular online machine learning algorithms.

2023

Online Anomaly Explanation: A Case Study on Predictive Maintenance

Authors
Ribeiro, RP; Mastelini, SM; Davari, N; Aminian, E; Veloso, B; Gama, J;

Publication
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II

Abstract
Predictive Maintenance applications are increasingly complex, with interactions between many components. Black-box models are popular approaches due to their predictive accuracy and are based on deep-learning techniques. This paper presents an architecture that uses an online rule learning algorithm to explain when the black-box model predicts rare events. The system can present global explanations that model the black-box model and local explanations that describe why the black-box model predicts a failure. We evaluate the proposed system using four real-world public transport data sets, presenting illustrative examples of explanations.

2023

An Online Data-Driven Predictive Maintenance Approach for Railway Switches

Authors
Tome, ES; Ribeiro, RP; Veloso, B; Gama, J;

Publication
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II

Abstract
An online data-driven predictive maintenance approach for railway switches using data logs obtained from the interlocking system of the railway infrastructure is proposed in this paper. The proposed approach is detailed described and consists of a two-phase process: anomaly detection and remaining useful life prediction. The approach is applied to and validated in a real case study, the Metro do Porto, from which seven months of data is available. The approach has been revealed to be satisfactory in detecting anomalies. The results open the possibilities for further studies and validation with a more extensive dataset on the remaining useful life prediction.

2023

Ethical and Technological AI Risks Classification: A Human Vs Machine Approach

Authors
Teixeira, S; Veloso, B; Rodrigues, JC; Gama, J;

Publication
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I

Abstract
The growing use of data-driven decision systems based on Artificial Intelligence (AI) by governments, companies and social organizations has given more attention to the challenges they pose to society. Over the last few years, news about discrimination appeared on social media, and privacy, among others, highlighted their vulnerabilities. Despite all the research around these issues, the definition of concepts inherent to the risks and/or vulnerabilities of data-driven decision systems is not consensual. Categorizing the dangers and vulnerabilities of data-driven decision systems will facilitate ethics by design, ethics in design and ethics for designers to contribute to responsibleAI. Themain goal of thiswork is to understand which types of AI risks/ vulnerabilities are Ethical and/or Technological and the differences between human vs machine classification. We analyze two types of problems: (i) the risks/ vulnerabilities classification task by humans; and (ii) the risks/vulnerabilities classification task by machines. To carry out the analysis, we applied a survey to perform human classification and the BERT algorithm in machine classification. The results show that even with different levels of detail, the classification of vulnerabilities is in agreement in most cases.

2023

Fault Forecasting Using Data-Driven Modeling: A Case Study for Metro do Porto Data Set

Authors
Davari, N; Veloso, B; Ribeiro, RP; Gama, J;

Publication
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II

Abstract
The demand for high-performance solutions for anomaly detection and forecasting fault events is increasing in the industrial area. The detection and forecasting faults from time-series data are one critical mission in the Internet of Things (IoT) data mining. The classical fault detection approaches based on physical modelling are limited to some measurable output variables. Accurate physical modelling of vehicle dynamics requires substantial prior information about the system. On the other hand, data-driven modelling techniques accurately represent the system's dynamic from data collection. Experimental results on large-scale data sets from Metro do Porto subsystems verify that our method performs high-quality fault detection and forecasting solutions. Also, health indicator obtained from the principal component analysis of the forecasting solution is applied to predict the remaining useful life.