Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Bruno Miguel Veloso
  • Cargo

    Investigador Sénior
  • Desde

    01 março 2013
006
Publicações

2026

Building of transformer-based RUL predictors supported by explainability techniques: Application on real industrial datasets

Autores
Dintén, R; Zorrilla, M; Veloso, B; Gama, J;

Publicação
INFORMATION FUSION

Abstract
One of the key aspects of Industry 4.0 is using intelligent systems to optimize manufacturing processes by improving productivity and reducing costs. These systems have greatly impacted in different areas, such as demand prediction and quality assessment. However, the prognostics and health management of industrial equipment is one of the areas with greater potential. This paper presents a comparative analysis of deep learning architectures applied to the prediction of the remaining useful life (RUL) on public real industrial datasets. The analysis includes some of the most commonly employed recurrent neural network variations and a novel approach based on a hybrid architecture using transformers. Moreover, we apply explainability techniques to provide comprehensive insights into the model's decision-making process. The contributions of the work are: (1) a novel transformer-based architecture for RUL prediction that outperforms traditional recurrent neural networks; (2) a detailed description of the design strategies used to construct the models on two under-explored datasets; (3) the use of explainability techniques to understand the feature importance and to explain the model's prediction and (4) making models built for reproducibility available to other researchers.

2025

Towards adaptive and transparent tourism recommendations: A survey

Autores
Leal, F; Veloso, B; Malheiro, B; Burguillo, JC;

Publicação
EXPERT SYSTEMS

Abstract
Crowdsourced data streams are popular and extremely valuable in several domains, namely in tourism. Tourism crowdsourcing platforms rely on past tourist and business inputs to provide tailored recommendations to current users in real time. The continuous, open, dynamic and non-curated nature of the crowd-originated data demands specific stream mining techniques to support online profiling, recommendation, change detection and adaptation, explanation and evaluation. The sought techniques must, not only, continuously improve and adapt profiles and models; but must also be transparent, overcome biases, prioritize preferences, master huge data volumes and all in real time. This article surveys the state-of-art of adaptive and explainable stream recommendation, extends the taxonomy of explainable recommendations from the offline to the stream-based scenario, and identifies future research opportunities.

2025

Modeling events and interactions through temporal processes: A survey

Autores
Liguori, A; Caroprese, L; Minici, M; Veloso, B; Spinnato, F; Nanni, M; Manco, G; Gama, J;

Publicação
NEUROCOMPUTING

Abstract
In real-world scenarios, numerous phenomena generate a series of events that occur in continuous time. Point processes provide a natural mathematical framework for modeling these event sequences. In this comprehensive survey, we aim to explore probabilistic models that capture the dynamics of event sequences through temporal processes. We revise the notion of event modeling and provide the mathematical foundations that underpin the existing literature on this topic. To structure our survey effectively, we introduce an ontology that categorizes the existing approaches considering three horizontal axes: modeling, inference and estimation, and application. We conduct a systematic review of the existing approaches, with a particular focus on those leveraging deep learning techniques. Finally, we delve into the practical applications where these proposed techniques can be harnessed to address real-world problems related to event modeling. Additionally, we provide a selection of benchmark datasets that can be employed to validate the approaches for point processes.

2025

Early Failure Detection for Air Production Unit in Metro Trains

Autores
Zafra, A; Veloso, B; Gama, J;

Publicação
HYBRID ARTIFICIAL INTELLIGENT SYSTEM, PT I, HAIS 2024

Abstract
Early identification of failures is a critical task in predictive maintenance, preventing potential problems before they manifest and resulting in substantial time and cost savings for industries. We propose an approach that predicts failures in the near future. First, a deep learning model combining long short-term memory and convolutional neural network architectures predicts signals for a future time horizon using real-time data. In the second step, an autoencoder based on convolutional neural networks detects anomalies in these predicted signals. Finally, a verification step ensures that a fault is considered reliable only if it is corroborated by anomalies in multiple signals simultaneously. We validate our approach using publicly available Air Production Unit (APU) data from Porto metro trains. Two significant conclusions emerge from our study. Firstly, experimental results confirm the effectiveness of our approach, demonstrating a high fault detection rate and a reduced number of false positives. Secondly, the adaptability of this proposal allows for the customization of configuration of different time horizons and relationship between the signals to meet specific detection requirements.

2025

Interpretable Rules for Online Failure Prediction: A Case Study on the Metro do Porto dataset

Autores
Jakobs, M; Veloso, B; Gama, J;

Publicação
CoRR

Abstract

Teses
supervisionadas

2023

Deep Neural Networks in Medical Microbiology - Bacterial Colonies Classification

Autor
José Duarte Pinho Pereira

Instituição
UP-FEP

2023

New Challenges in Official Statistics: Big Data Analytics and Multi-level Product Classification of Web Scraped Data

Autor
Juliana de Freitas Ulisses Machado

Instituição
UP-FEP

2023

{Unlocking Performance Potential: Power BI Implementation and its Transformative Impact on Proef's Business Intelligence

Autor
Bárbara Alexandra Ferreira Salgado

Instituição
UP-FEP

2023

Comparative Analysis of the Relationship Between Organizational Behaviour, Business Strategy, and Results - Study of European Football Clubs

Autor
Pedro Miguel Coutinho Federico de Mendes Ferreira

Instituição
UP-FEP

2023

Customers' revenue fluctuation in a Telecommunication company: Data Warehouse Construction and Visualization

Autor
Cândido Rafael Toledo Rocha

Instituição
UP-FEP