Detalhes
Nome
Bruno Miguel VelosoCargo
Investigador SéniorDesde
01 março 2013
Nacionalidade
PortugalCentro
Laboratório de Inteligência Artificial e Apoio à DecisãoContactos
+351220402963
bruno.m.veloso@inesctec.pt
2025
Autores
Zafra, A; Veloso, B; Gama, J;
Publicação
HYBRID ARTIFICIAL INTELLIGENT SYSTEM, PT I, HAIS 2024
Abstract
Early identification of failures is a critical task in predictive maintenance, preventing potential problems before they manifest and resulting in substantial time and cost savings for industries. We propose an approach that predicts failures in the near future. First, a deep learning model combining long short-term memory and convolutional neural network architectures predicts signals for a future time horizon using real-time data. In the second step, an autoencoder based on convolutional neural networks detects anomalies in these predicted signals. Finally, a verification step ensures that a fault is considered reliable only if it is corroborated by anomalies in multiple signals simultaneously. We validate our approach using publicly available Air Production Unit (APU) data from Porto metro trains. Two significant conclusions emerge from our study. Firstly, experimental results confirm the effectiveness of our approach, demonstrating a high fault detection rate and a reduced number of false positives. Secondly, the adaptability of this proposal allows for the customization of configuration of different time horizons and relationship between the signals to meet specific detection requirements.
2025
Autores
Jakobs, M; Veloso, B; Gama, J;
Publicação
CoRR
Abstract
2025
Autores
Arianna Teixeira Pereira; Janielle Da Silva Lago; Yvelyne Bianca Iunes Santos; Bruno Miguel Delindro Veloso; Norma Ely Santos Beltrão;
Publicação
Revista de Gestão Social e Ambiental
Abstract
2025
Autores
Paim, AM; Gama, J; Veloso, B; Enembreck, F; Ribeiro, RP;
Publicação
Proceedings of the 40th ACM/SIGAPP Symposium on Applied Computing, SAC 2025, Catania International Airport, Catania, Italy, 31 March 2025 - 4 April 2025
Abstract
The learning from continuous data streams is a relevant area within machine learning, focusing on the creation and updating of predictive models in real time as new data becomes available for training and prediction. Among the most widely used methods for this type of task, Hoeffding Trees are highly valued for their simplicity and robustness across a variety of applications and are considered the primary choice for generating decision trees in data stream contexts. However, Hoeffding Trees tend to continuously expand as new data is incorporated, resulting in increased processing time and memory consumption, often without providing significant gains in accuracy. In this study, we propose an instance selection scheme that combines different strategies to regularize Hoeffding Trees and their variants, mitigating excessive growth without compromising model accuracy. The method selects misclassified instances and a fraction of correctly classified instances during the training phase. After extensive experimental evaluation, the instance selection scheme demonstrates superior predictive performance compared to the original models (without selection), for both real and synthetic datasets for data streams, using a reduced subset of examples. Additionally, the method achieves relevant improvements in processing time, model complexity, and memory consumption, highlighting the effectiveness of the proposed instance selection scheme. Copyright © 2025 held by the owner/author(s).
2024
Autores
Mastelini, SM; Veloso, B; Halford, M; de Carvalho, ACPDF; Gama, J;
Publicação
INFORMATION FUSION
Abstract
Nearest neighbor search (NNS) is one of the main concerns in data stream applications since similarity queries can be used in multiple scenarios. Online NNS is usually performed on a sliding window by lazily scanning every element currently stored in the window. This paper proposes Sliding Window-based Incremental Nearest Neighbors (SWINN), a graph-based online search index algorithm for speeding up NNS in potentially never-ending and dynamic data stream tasks. Our proposal broadens the application of online NNS-based solutions, as even moderately large data buffers become impractical to handle when a naive NNS strategy is selected. SWINN enables efficient handling of large data buffers by using an incremental strategy to build and update a search graph supporting any distance metric. Vertices can be added and removed from the search graph. To keep the graph reliable for search queries, lightweight graph maintenance routines are run. According to experimental results, SWINN is significantly faster than performing a naive complete scan of the data buffer while keeping competitive search recall values. We also apply SWINN to online classification and regression tasks and show that our proposal is effective against popular online machine learning algorithms.
Teses supervisionadas
2023
Autor
José Duarte Pinho Pereira
Instituição
UP-FEP
2023
Autor
Juliana de Freitas Ulisses Machado
Instituição
UP-FEP
2023
Autor
Bárbara Alexandra Ferreira Salgado
Instituição
UP-FEP
2023
Autor
Pedro Miguel Coutinho Federico de Mendes Ferreira
Instituição
UP-FEP
2023
Autor
Cândido Rafael Toledo Rocha
Instituição
UP-FEP
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.