Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About
Download Photo HD

About

Aurélio Campilho is Professor in the Department of Electrical and Computer Engineering, Faculty of Engineering, University of Porto, Portugal. He is a Senior Member of the IEEE – The Institute of Electrical and Electronics Engineers. He is coordinator of the Center for Biomedical Engineering Research (C-BER) and develops research at the Biomedical Imaging Lab from C-BER from INESC TEC – Institute for Systems and Computer Engineering, Technology and Science. His teaching activities are in the  courses: Bioengineering Master Degree: Introduction to Scientific Computing, Biomedical Image Analysis and Computer-aided Diagnosis; Doctoral Degree in Electrical and Computer Engineering: Image Analysis and Recognition. His current research interests include the areas of biomedical engineering, medical image analysis, image processing and computer vision, particularly in Computer-aided Diagnosis applied in several imaging modalities, including ophthalmic images, carotid ultrasound imaging and computed tomography of the lung. He is General Chair of the series of International Conferences on Image Analysis and Recognition (ICIAR).

Interest
Topics
Details

Details

006
Publications

2020

Automatic lung nodule detection combined with gaze information improves radiologists' screening performance

Authors
Aresta, G; Ramos, I; Campilho, A; Ferreira, C; Pedrosa, J; Araujo, T; Rebelo, J; Negrao, E; Morgado, M; Alves, F; Cunha, A;

Publication
IEEE Journal of Biomedical and Health Informatics

Abstract

2020

IDRiD: Diabetic Retinopathy – Segmentation and Grading Challenge

Authors
Porwal, P; Pachade, S; Kokare, M; Deshmukh, G; Son, J; Bae, W; Liu, LH; Wang, J; Liu, XH; Gao, LX; Wu, TB; Xiao, J; Wang, FY; Yin, BC; Wang, YZ; Danala, G; He, LS; Choi, YH; Lee, YC; Jung, SH; Li, ZY; Sui, XD; Wu, JY; Li, XL; Zhou, T; Toth, J; Bara, A; Kori, A; Chennamsetty, SS; Safwan, M; Alex, V; Lyu, XZ; Cheng, L; Chu, QH; Li, PC; Ji, X; Zhang, SY; Shen, YX; Dai, L; Saha, O; Sathish, R; Melo, T; Araujo, T; Harangi, B; Sheng, B; Fang, RG; Sheet, D; Hajdu, A; Zheng, YJ; Mendonca, AM; Zhang, ST; Campilho, A; Zheng, B; Shen, D; Giancardo, L; Quellec, G; Meriaudeau, F;

Publication
Medical Image Analysis

Abstract

2020

DR|GRADUATE: uncertainty-aware deep learning-based diabetic retinopathy grading in eye fundus images

Authors
Araújo, T; Aresta, G; Mendonça, L; Penas, S; Maia, C; Carneiro, Â; Mendonça, AM; Campilho, A;

Publication
Medical Image Analysis

Abstract

2020

O-MedAL: Online active deep learning for medical image analysis

Authors
Smailagic, A; Costa, P; Gaudio, A; Khandelwal, K; Mirshekari, M; Fagert, J; Walawalkar, D; Xu, S; Galdran, A; Zhang, P; Campilho, A; Noh, HY;

Publication
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery

Abstract
Active learning (AL) methods create an optimized labeled training set from unlabeled data. We introduce a novel online active deep learning method for medical image analysis. We extend our MedAL AL framework to present new results in this paper. A novel sampling method queries the unlabeled examples that maximize the average distance to all training set examples. Our online method enhances performance of its underlying baseline deep network. These novelties contribute to significant performance improvements, including improving the model's underlying deep network accuracy by 6.30%, using only 25% of the labeled dataset to achieve baseline accuracy, reducing backpropagated images during training by as much as 67%, and demonstrating robustness to class imbalance in binary and multiclass tasks. This article is categorized under:. Technologies > Machine Learning. Technologies > Classification. Application Areas > Health Care. © 2020 Wiley Periodicals, Inc.

2020

Automatic classification of retinal blood vessels based on multilevel thresholding and graph propagation

Authors
Remeseiro, B; Mendonça, AM; Campilho, A;

Publication
The Visual Computer

Abstract

Supervised
thesis

2019

Lung nodule characterization and follow-up assessment

Author
Daniela Marisa da Silva Campos

Institution
UP-FEUP

2019

Segmentation and Quantification of Gynecological Structures from Ultrasound Images

Author
Diego Santos Wanderley

Institution
UP-FEUP

2019

Detection of lung nodules in computed tomography images

Author
Guilherme Moreira Aresta

Institution
UP-FEUP

2019

content based image retrieval as a computer aided diagnosis tool for radiologists

Author
José Ricardo Ferreira de Castro Ramos

Institution
UP-FEUP

2019

Diabetic Retinopathy Grading in Color Eye Fundus Images

Author
Teresa Manuel Sá Finisterra Araújo

Institution
UP-FEUP