Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Nationality

    Portugal
  • Centre

    Applied Photonics
  • Contacts

    +351220402301
    antonio.v.rodrigues@inesctec.pt
Publications

2020

Magnetostriction assessment with strain gauges and fiber bragg gratings

Authors
Linhares, CC; Santo, JE; Teixeira, RR; Coutinho, CP; Tavares, SMO; Pinto, M; Costa, JS; Mendes, H; Monteiro, CS; Rodrigues, AV; Frazão, O;

Publication
EAI Endorsed Transactions on Energy Web

Abstract
Power transformers have an imperative role in the future developments of the electrical grids. Treated as crucial assets for transportation and distribution of electrical energy, transformers are currently being studied regarding to the integration of technologies aiming to diagnose problems and monitoring data of electrical power grid. Furthermore, environmental noise pollution has gained importance, especially in active units of the power grid, located near consumers, such as transformers. Transformers noise can be classified according to its source: core, windings and cooling. This study addresses an experimental characterization of one of the main causes of transformers core noise-magnetostriction of electrical steel. An evaluation of magnetostriction properties of electrical steel, including resistive strain gauges and Fiber Bragg Gratings (FBGs) measurements with an Epstein frame, are presented and discussed. The magnetic flux density influence on hysteretic strain behavior of magnetostriction was evaluated, as well as the effect of a clamping load on core joints. Nowadays, optical interrogators for Bragg gratings have a high acquisition frequencies and wavelength sensitivity when compared to former optical interrogation systems, allowing to evaluate physical phenomena without electromagnetic interference and with equivalent resolution of conventional strain gauges. © 2019 Cassiano C. Linhares et al.