Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

António Galrão Ramos has a M.Sc. degree in Logistics by the Porto Business School, University of Porto, Portugal and a PhD degree in Industrial Engineering and Management, by the University of Porto. He is an Associate Professor with the Department of Mechanical Engineering, School of Engineering, Polytechnic of Porto (ISEP) and a researcher at the Institute for Systems and Computer Engineering of Porto (INESC TEC). He worked in multinational companies in Project Management, Operations and Logistics Management for over 10 years.

His main area of scientific activity is Operations Research and Management Science. Within Operations Research the main application area are the 3D Cutting and Packing Problems, while from the techniques viewpoint the research is centred in the use and development of metaheuristics approaches that integrate safety and logistics constraints, so that the solutions can be of practical use.

He regularly publishes the results of his research in the main operations research and management science international scientific journals and keeps a frequent activity in consultancy with private companies.

During his academic career he has mainly taught courses on Operations Research, Logistics, Warehouse and Inventory Management and Operations Management. He has served as Member of the Technical-Scientific Council of ISEP and he is now Vice-director of the BSc Program in Automotive Engineering at ISEP.

Interest
Topics
Details

Details

004
Publications

2022

On-line three-dimensional packing problems: A review of off-line and on-line solution approaches

Authors
Ali, S; Ramos, AG; Carravilla, MA; Oliveira, JF;

Publication
COMPUTERS & INDUSTRIAL ENGINEERING

Abstract
Three-Dimensional Packing Problems (3D-PPs) can be applied to effectively reduce logistics costs in various areas, such as airline cargo management and warehouse management. In general, 3D-PP studies can be divided into two different streams: those tackling the off-line problem, where full knowledge about items is available beforehand; and those tackling the on-line (real-time) problem, where items arrive one by one and should be packed immediately without having full prior knowledge about them. During the past decades, off-line and online 3D-PPs have been studied in the literature with various constraints and solution approaches. However, and despite the numerous practical applications of on-line problems in real-world situations, most of the literature to date has focused on off-line problems and is quite sparse when it comes to on-line solution methods. In this regard, and despite the different nature of on-line and off-line problems, some approaches can be applied in both environments. Hence, we conducted an in-depth and updated literature review to identify and structure various constraints and solution methods employed by researchers in off-line and on-line 3D-PPs. Building on this, by bringing together the two separate streams of the literature, we identified several off-line approaches that can be adopted in on-line environments. Additionally, we addressed relevant research gaps and ways to bridge them in the future, which can help to develop this research field.

2022

CrossLog: Automatic Mixed-Palletizing for Cross-Docking Logistics Centers

Authors
Rocha, P; Ramos, AG; Silva, E;

Publication
COMPUTATIONAL LOGISTICS (ICCL 2022)

Abstract
The CrossLog project aims to investigate, study, develop and implement an automated and collaborative cross-docking system (aligned with Industry 4.0) capable of moving and managing the flow of products within the warehouse in the fastest and safest way. In CrossLog, the ability to generate intelligent three-dimensional packing patterns is essential to ensure the flexibility and productivity of the cross-docking system while ensuring the stability of the palletised load. In this work, a heuristic solution approach is proposed to generate efficient pallet packing patterns that simultaneously minimise the total number of pallets required and address the balance of weight and volume between pallets. Computational experiments with data from a real company demonstrate the quality of the proposed solution approach.

2021

Complexity Constraint in the Distributor's Pallet Loading Problem

Authors
Barros, H; Pereira, T; Ramos, AG; Ferreira, FA;

Publication
MATHEMATICS

Abstract
This paper presents a study on the complexity of cargo arrangements in the pallet loading problem. Due to the diversity of perspectives that have been presented in the literature, complexity is one of the least studied practical constraints. In this work, we aim to refine and propose a new set of metrics to measure the complexity of an arrangement of cargo in a pallet. The parameters are validated using statistical methods, such as principal component analysis and multiple linear regression, using data retrieved from the company logistics. Our tests show that the number of boxes was the main variable responsible for explaining complexity in the pallet loading problem.

2021

Analysis of the Impact of Physical Internet on the Container Loading Problem

Authors
Ferreira, AR; Ramos, AG; Silva, E;

Publication
COMPUTATIONAL LOGISTICS (ICCL 2021)

Abstract
In the Physical Internet supply chain paradigm, modular boxes are one of the main drivers. The dimension of the modular boxes has already been subject to some studies. However, the usage of a modular approach on the container loading problem has not been accessed. In thiswork, we aim to assess the impact of modular boxes in the context of the Physical Internet on the optimization of loading solutions. A mathematical model for the CLP problem is used, and extensive computational experimentswere performed in a set of problem instances generated considering the Physical Internet concept. From this study, it was possible to conclude for the used instances that modular boxes contribute to a higher volume usage and lower computational times.

2020

A generic mathematical formulation for two-echelon distribution systems based on mobile depots

Authors
Oliveira, B; Ramos, AG; De Sousa, JP;

Publication
Transportation Research Procedia

Abstract
The negative impacts of urban logistics have fostered the search for new distribution systems in inner city deliveries. In this context, interesting solutions can be developed around two-echelon distribution systems based on mobile depots (2E-MD), where loads arriving from the periphery of the city are directly transferred, at intermediate locations, from larger to smaller vehicles more suited to operate in the city centre. Four types of 2E-MD can be identified, according to the degree of mobility of larger vehicles and their accessibility to customers. In this paper, we propose a generic three-index arc-based mixed integer programming model, for a two-echelon vehicle routing problem, with synchronisation at the satellites and multi-trips at the second echelon. This generic base model is formulated for the most restrictive type of problems, where larger vehicles visit a a single transfer location and do not perform direct deliveries to customers, but it can be easily extended to address the other types of 2E-MD. The paper presents how these extensions account for the characteristics of the different types of 2E-MD. The generic model, its extensions and the impact of a set of valid inequalities are tested using problem instances adapted from the VRP literature. Results show that the proposed extensions do adequately address the specific features of the different types of 2E-MD, including multiple visits to satellites, and direct deliveries to customers. Nevertheless, the resulting models can only tackle rather small instances, even if the formulations can be strengthened by adding the valid inequalities proposed in the paper. © 2020 The Authors. Published by ELSEVIER B.V.

Supervised
thesis

2022

DESENVOLVIMENTO DE PROCESSOS, PROCEDIMENTOS E ESTANDARDIZAÇÃO DE ARMAZÉNS

Author
CATARINA GONÇALVES BARRIAS

Institution
IPP-ISEP

2022

Garantia de estabilidade da carga no abastecimento de postos de combustível

Author
ROBERTO GONÇALVES DA PAIXÃO

Institution
IPP-ISEP

2022

COORDENAÇÃO E DESENVOLVIMENTO DA OPERAÇÃO LOGÍSTICA

Author
PAULO MIGUEL LOPES FERNANDES

Institution
IPP-ISEP

2022

Algoritmo de optimização para cacifos modulares

Author
JOÃO RODRIGO DA SILVA NEVES VIANA

Institution
IPP-ISEP

2022

URBAN NAVIGATION ? HANDLING OPENSTREETMAP DATA FOR AN EASY TO DRIVE ROUTE

Author
ROSÁRIA SPINA

Institution
IPP-ISEP