Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
About

About

António Galrão Ramos has a M.Sc. degree in Logistics by the Porto Business School, University of Porto, Portugal and a PhD degree in Industrial Engineering and Management, by the University of Porto. He is an Associate Professor with the Department of Mechanical Engineering, School of Engineering, Polytechnic of Porto (ISEP) and a researcher at the Institute for Systems and Computer Engineering of Porto (INESC TEC). He worked in multinational companies in Project Management, Operations and Logistics Management for over 10 years.

His main area of scientific activity is Operations Research and Management Science. Within Operations Research the main application area are the 3D Cutting and Packing Problems, while from the techniques viewpoint the research is centred in the use and development of metaheuristics approaches that integrate safety and logistics constraints, so that the solutions can be of practical use.

He regularly publishes the results of his research in the main operations research and management science international scientific journals and keeps a frequent activity in consultancy with private companies.

During his academic career he has mainly taught courses on Operations Research, Logistics, Warehouse and Inventory Management and Operations Management. He has served as Member of the Technical-Scientific Council of ISEP and he is now Vice-director of the BSc Program in Automotive Engineering at ISEP.

Interest
Topics
Details

Details

Publications

2018

Cargo stability in the container loading problem - State-of-the-art and future research directions

Authors
Ramos, AG; Oliveira, JF;

Publication
Springer Proceedings in Mathematics and Statistics

Abstract
The purpose of this paper is to present the current understanding and conceptualization of the cargo stability constraint within the context of the Container Loading Problem. This problem is highly relevant in the transportation industry due to the increasing pressure for a more economically, environmentally and socially efficient and sustainable cargo transportation. Stability is one the most important practical relevant constraints in the Container Loading Problem due to its strong influence on the cargo arrangement. Stability is usually divided into stability during loading operations (static) and stability during transportation (dynamic). Two main contributions are made. Firstly, an overview of recent developments in the literature on the two types of stability, static and dynamic, is provided. Secondly, of opportunities for future research are identified. © Springer International Publishing AG 2018.

2018

An intercontinental replenishment problem: A hybrid approach

Authors
Silva, E; Ramos, AG; Lopes, M; Magalhaes, P; Oliveira, JF;

Publication
Springer Proceedings in Mathematics and Statistics

Abstract
This work addresses a case study in an intercontinental supply chain. The problem emerges in a company in Angola dedicated to the trade of consumable goods for construction building and industrial maintenance. The company in Angola sends the replenishment needs to a Portuguese company, which takes the decision of which products and in which quantities will be sent by shipping container to the company in Angola. The replenishment needs include the list of products that reached the corresponding reorder point. The decision of which products and in which quantity should take into consideration a set of practical constraints: the maximum weight of the cargo, the maximum volume the cargo and financial constraints related with the minimum value that guarantees the profitability of the business and a maximum value associated with shipping insurance. A 2-stage hybrid method is proposed. In the first stage, an integer linear programming model is used to select the products that maximise the sales potential. In the second stage, a Container Loading Algorithm is used to effectively pack the selected products in the shipping container ensuring the geometrical constraints, and safety constraints such as weight limit and stability. A new set of problem instances was generated with the 2DCPackGen problem generator, using as inputs the data collected in the company. Computational results for the algorithm are presented and discussed. Good results were obtained with the solution approach proposed, with an average occupation ratio of 92% of the container and an average gap of 4% for the solution of the integer linear programming model. © Springer International Publishing AG 2018.

2018

Load balance recovery for multi-drop distribution problems: A mixed integer linear programming approach

Authors
Silva, E; Ramos, AG; Oliveira, JF;

Publication
Transportation Research Part B: Methodological

Abstract
In road freight transport, a loaded vehicle with a distribution route and a compliant load balance at the depot can become non-compliant during the route, since the total weight of the cargo and its centre of gravity change with each delivery. Nowadays, vehicles circulating on our roads either undermine safety regulations or lack operational efficiency when these regulations are taken into account and cargo is extensively rearranged after each delivery. This issue has been completely ignored both in the vehicle routing literature and in the container loading literature. The aim of this work is to provide tools capable of ensuring that a cargo arrangement is load balanced along the complete distribution trip. It proposes a multi-drop load balance recovery algorithm (MDLBRA), which seeks to ensure that, when both a complete route and the respective cargo arrangement are provided, the boxes to be removed from the cargo arrangement at the depot and the boxes to be rearranged at each customer are identified, allowing the cargo to remain balanced after every delivery. It is important to notice that a MDLBRA is not a container loading algorithm: a MDLBRA modifies solutions generated by any container loading algorithm so that load balance is guaranteed when the truck leaves the depot and during the entire distribution route. A mixed integer linear programming (MILP) model is proposed to balance the cargo at each customer stop. The MILP model incorporates load distribution diagram constraints in order to determine the feasible domain for the location of the centre of gravity of the cargo arrangement, taking into account the regulatory requirements and the technical characteristics of the vehicle. Extensive computational experiments show that a MDLBRA can be used in practical contexts, as the MILP model was able to find a solution in less than ten minutes in 93% of the unbalanced test instances. © 2018 Elsevier Ltd

2017

Cargo dynamic stability in the container loading problem -a physics simulation tool approach

Authors
Ramos, AG; Jacob, J; Justo, JF; Oliveira, JF; Rodrigues, R; Gomes, AM;

Publication
International Journal of Simulation and Process Modelling

Abstract
The container loading problem (CLP) is a real-world driven, combinatorial optimisation problem that addresses the maximisation of space usage in cargo transport units. The research conducted on this problem failed to fulfill the real needs of the transportation industry, owing to the inadequate representation of practical-relevant constraints. The dynamic stability of cargo is one of the most important practical constraints. It has been addressed in the literature in an over-simplified way which does not translate to real-world stability. This paper proposes a physics simulation tool based on a physics engine, which can be used to translate real-world stability into the CLP. To validate the tool, a set of benchmark tests is proposed and the results obtained with the physics simulation tool are compared to the state-of-the-art simulation engineering software Abaqus Unified FEA. Analytical calculations have been also conducted, and it was also possible to conclude that the tool proposed is a valid alternative. Copyright © 2017 Inderscience Enterprises Ltd.

2017

A new Load Balance Methodology for Container Loading Problem in Road Transportation

Authors
Ramos, AG; Silva, E; Oliveira, JF;

Publication
European Journal of Operational Research

Abstract

Supervised
thesis

2017

OTIMIZAÇÃO DO PLANEAMENTO E ESCALONAMENTO DE PESSOAL EM CONTEXTO DE OUTSOURCING INDUSTRIAL

Author
ANA CATARINA MOREIRA ANJOS

Institution
IPP-ISEP

2017

Melhoria dos processos de reposição física de artigos em loja - Caso de estudo Leroy Merlin

Author
RAQUEL SOFIA TEIXEIRA PEIXOTO

Institution
IPP-ISEP

2017

ORGANIZAÇÃO E GESTÃO DE EQUIPAS MOTORSPORT

Author
PAULO JOSÉ GOMES RAMALHO

Institution
IPP-ISEP

2017

BASES PARA CUSTEIO DE ATIVIDADES INDUSTRIAIS

Author
AVELINO DIOGO TEIXEIRA DA CUNHA

Institution
IPP-ISEP

2016

Otimização do processo de produção de gelo em lojas de retalho alimentar

Author
JOSÉ PAULO DOS SANTOS LEAL

Institution
IPP-ISEP