Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

António Galrão Ramos has a M.Sc. degree in Logistics by the Porto Business School, University of Porto, Portugal and a PhD degree in Industrial Engineering and Management, by the University of Porto. He is an Associate Professor with the Department of Mechanical Engineering, School of Engineering, Polytechnic of Porto (ISEP) and a researcher at the Institute for Systems and Computer Engineering of Porto (INESC TEC). He worked in multinational companies in Project Management, Operations and Logistics Management for over 10 years.

His main area of scientific activity is Operations Research and Management Science. Within Operations Research the main application area are the 3D Cutting and Packing Problems, while from the techniques viewpoint the research is centred in the use and development of metaheuristics approaches that integrate safety and logistics constraints, so that the solutions can be of practical use.

He regularly publishes the results of his research in the main operations research and management science international scientific journals and keeps a frequent activity in consultancy with private companies.

During his academic career he has mainly taught courses on Operations Research, Logistics, Warehouse and Inventory Management and Operations Management. He has served as Member of the Technical-Scientific Council of ISEP and he is now Vice-director of the BSc Program in Automotive Engineering at ISEP.

Interest
Topics
Details

Details

  • Name

    António Galrão Ramos
  • Since

    01st March 2013
007
Publications

2025

Static stability versus packing efficiency in online three-dimensional packing problems: A new approach and a computational study

Authors
Ali, S; Ramos, AG; Oliveira, JF;

Publication
COMPUTERS & OPERATIONS RESEARCH

Abstract
In online three-dimensional packing problems where items are received one by one and require immediate packing decisions without prior knowledge of upcoming items, considering the static stability constraint is crucial for safely packing each arriving item in real time. Unstable loading patterns can result in risks of potential damage to items, containers, and operators during loading/unloading operations. Nevertheless, static stability constraints have often been neglected or oversimplified in existing online heuristic methods in the literature, undermining the practical implementation of these methods in real-world scenarios. In this study, we analyze how different static stability constraints affect solutions' efficiency and cargo stability, aiming to provide valuable insights and develop heuristic algorithms for real-world online problems, thus increasing the applicability of this research field. To this end, we embedded four distinct static stability constraints in online heuristics, including full-base support, partial-base support, center-of-gravity polygon support, and novel partial-base polygon support. Evaluating the impact of these constraints on the efficiency of a wide range of heuristic methods on real instances showed that regarding the number of used bins, heuristics with polygon- based stabilities have superior performance against those under full-base and partial-base support stabilities. The static mechanical equilibriumapproach offers a necessary and sufficient condition for the cargo static stability, and we employed it as a benchmark in our study to assess the quality of the four studied stability constraints. Knowing the number of stable items under each of these constraints provides valuable managerial insight for decision-making in real-world online packing scenarios.

2025

An Integrated Framework to Address Last-Mile Delivery Problem in Large-Scale Cities by Combination of Machine Learning and Optimisation

Authors
Silva, R; Ramos, G; Salimi, F;

Publication
SN Computer Science

Abstract
The main goal of this paper was to develop, implement, and test a practical framework for large-scale last-mile delivery problems that employ a combination of optimisation and machine learning while focussing on different routing methods. Delivery companies in big cities choose delivery orders based on the tacit knowledge of experienced drivers, since solving a large optimisation model with several variables is not a practical solution to meet their daily needs. This framework includes three phases of districting, sequencing, and routing, and in total 30 different variants were tested in different capacities. Using the power of machine learning, a model is trained and tuned to predict driving road distances, allowing the implementation of the whole framework and improving performance from analysing 2983 stops in several hours to 58,192 stops in less than 15 minutes. The results demonstrated that Inter 1 - Centroids is the best inter-district connection method, and one of the best variants in this framework is variant 26 which managed to decrease up to 34,77% total distances with 79 fewer drivers in a full month analysis compared to the original routes of the delivery company. © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025.

2025

Standing on a common ground: a comparison of static stability approaches for pallet loading

Authors
Mazur, PG; Gamer, FC; Ramos, AG; Schoder, D;

Publication
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

Abstract
At the practical level, the static stability constraint is one of the most important constraints in practical pallet loading problems, such as air cargo palletizing. Approaches to modeling static stability, which range from base support and mechanical equilibrium calculations to physical simulation, differ in workflow, focus, and assumptions, so choosing the right static stability approach has a substantial impact on the quality of the solution and, ultimately, on loading security. To date, little research has investigated the structural differences between approaches. The aim of this paper is to integrate knowledge and shed light on the applicability of the different approaches for the practical scenario of air cargo palletizing. We tackle this problem through (1) a reformulation and extension of static stability toward loading stability, (2) a conceptual analysis of current approaches, and (3) benchmarking that employs an independent multibody simulation on multiple heterogeneous datasets. Our results show that all approaches are prone to structure errors and vary significantly in their premises and information usage. Further, full base support is revealed to be the most restrictive approach by far, while physical simulation achieves the greatest accuracy. Given the trade-off between accuracy and runtime, the mechanical equilibrium approach is a good choice, while partial base support performs best for lower support values.

2025

Decision Support System for Scheduling Vehicle Maintenance and Repair Activities in an Automotive Repair Shop

Authors
Martins, J; Ramos, AG;

Publication
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2025, PT I

Abstract
To maintain high levels of efficiency and compliance with delivery dates, automotive repair shops must have a good system for scheduling their activities. The scheduling of the activities of an automotive repair shop is a very complex task to be performed manually. Throughout this work, a Decision Support System (DSS) was developed and tested that considers two major constraints in an automotive workshop: human resources (technicians) and physical resources (work stalls). The proposed DSS has an embedded MIP model that assigns a technician and a work stall to each job, according to the input conditions. The DSS also generates schedules with the planning of technicians and jobs. The system was tested with real data from an automotive workshop and was able to create plans and schedules not only for the human and physical resources in but also to analyse the limiting resources of the workshop.

2025

A 3D printing nesting algorithm with dynamic collision constraints

Authors
Rocha, P; Ramos, AG; Silva, E;

Publication
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH

Abstract
Additive Layer Manufacturing, particularly Fused Deposition Modelling, faces significant batch loss risks during production. The traditional Concurrent Printing Mode produces all parts simultaneously (layer-by-layer, bottom-to-top), efficiently using printing space but risking complete batch failure if problems occur. In contrast, Sequential Printing Mode produces one part at a time, reducing the risk of total batch loss but utilising printing space less efficiently. In this work, we propose an algorithm that, given a set of parts, performs the nesting of the parts for Concurrent Printing Mode, and for the first time, for the Sequential Printing Mode. A no-fit polygon based approach is used to handle geometry between pairs of parts by using multiple horizontal 2D layer projections of 3D parts, to ensure non-overlapping constraints and prevent machine-part collisions. A Greedy Randomized Adaptive Search Procedure is proposed, tested and benchmarked against a commercial software, using a new set of real-world instances. The approach shows the ability to find high-quality solutions. The approach significantly reduces the number of batches, minimises waste, reduces manufacturing time, and promotes parts quality.

Supervised
thesis

2023

Using districting and a data driven TSP to improve last mile delivery

Author
BEATRIZ BARBOSA DOS SANTOS

Institution
IPP-ISEP

2022

ALGORITMO DE AVALIAÇÃO DA ESTABILIDADE DE UMA PALETE

Author
JOÃO CORREIA DE ARAÚJO

Institution
IPP-ISEP

2022

SISTEMA DE APOIO À DECISÃO PARA O ESCALONAMENTO DE VIATURAS NUMA OFICINA DE REPARAÇÃO AUTOMÓVEL

Author
JOÃO PEDRO NUNES MARTINS

Institution
IPP-ISEP

2022

DESENVOLVIMENTO DE PROCESSOS, PROCEDIMENTOS E ESTANDARDIZAÇÃO DE ARMAZÉNS

Author
CATARINA GONÇALVES BARRIAS

Institution
IPP-ISEP

2022

Garantia de estabilidade da carga no abastecimento de postos de combustível

Author
ROBERTO GONÇALVES DA PAIXÃO

Institution
IPP-ISEP