Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    André Filipe Moura
  • Role

    Researcher
  • Since

    01st September 2021
004
Publications

2025

An Educational Robotics Competition - The Robotics@ISEP Open Experience

Authors
Silva, MF; Dias, A; Guedes, P; Barbosa, RS; Estrela, J; Moura, A; Cerqueira, V;

Publication
IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2025, Funchal, Portugal, April 2-3, 2025

Abstract
There is a strong need to motivate students to learn science, technology, engineering, and mathematics (STEM) subjects. This is a problem not only at lower educational levels, but also at college institutions. With this idea in mind, the School of Engineering of the Porto Polytechnic (ISEP) Electrical Engineering Department decided, in 2021, to launch a robotics competition in order to foster students' interest in the areas of robotics and automation. This event, named Robotics@ISEP Open, aims to raise awareness of the area of electronics, computing, and robotics among students, involving them in the use of techniques and tools in this area, and encompasses three distinct robotics competitions covering both manipulator arms and mobile robots. It is based on two main points of interest: (i) robotic competitions and (ii) outside class training in robotics, aimed at students who want support to participate in competitions. Since its first edition, the event has grown and internationalized and has already become a milestone in the academic life of ISEP. This paper presents the motivations that led to the creation of this event, its main organizational aspects, and the competitions that are part of it, as well as some results gathered from the experience accumulated in organizing it. © 2025 IEEE.

2024

MANTIS: UAV for Indoor Logistic Operations

Authors
Dias, A; Martins, JJ; Antunes, J; Moura, A; Almeida, J;

Publication
2024 7TH IBERIAN ROBOTICS CONFERENCE, ROBOT 2024

Abstract
This paper presents the Unmanned Aerial Vehicle (UAV) MANTIS, developed for indoor inventory management in large-scale warehouses. MANTIS integrates a visual odometry (VIO) system for precise localization, thus allowing indoor navigation in complex environments. The mechanical design was optimized for stability and maneuverability in confined spaces, incorporating a lightweight frame and efficient propulsion system. The UAV is equipped with an array of sensors, including a 2D LiDAR, six cameras, and two IMUs, which ensures accurate data collection. The VIO system integrates visual data with inertial measurements to maintain robust, drift-free localization. A behavior tree (BT) framework is responsible for the UAV mission planner assigned to the vehicle, which can be flexible and adaptive in response to dynamic warehouse conditions. To validate the accuracy and reliability of the VIO system, we conducted a series of tests using an OptiTrack motion capture system as a ground truth reference. Comparative analysis between the VIO and OptiTrack data demonstrates the efficacy of the VIO system in maintaining accurate localization. The results prove MANTIS, with the required payload sensors, is a viable solution for efficient and autonomous inventory management.

2023

Autonomous UAV Landing Approach for Marine Operations

Authors
Moura, A; Antunes, J; Martins, JJ; Dias, A; Martins, A; Almeida, JM; Silva, E;

Publication
OCEANS 2023 - LIMERICK

Abstract
The use of autonomous vehicles in maritime operations is a technological challenge. In the particular case of autonomous aerial vehicles (UAVs), their application ranges from inspection and surveillance of offshore power plants, and marine life observation, to search and rescue missions. Manually landing UAVs onboard water vessels can be very challenging due to limited space onboard and wave agitation. This paper proposes an autonomous solution for the task of landing commercial multicopter UAVs with onboard cameras on water vessels, based on the detection of a custom landing platform with computer vision techniques. The autonomous landing behavior was tested in real conditions, using a research vessel at sea, where the UAV was able to detect, locate, and safely land on top of the developed landing platform.

2023

The MONET dataset: Multimodal drone thermal dataset recorded in rural scenarios

Authors
Riz L.; Caraffa A.; Bortolon M.; Mekhalfi M.L.; Boscaini D.; Moura A.; Antunes J.; Dias A.; Silva H.; Leonidou A.; Constantinides C.; Keleshis C.; Abate D.; Poiesi F.;

Publication
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops

Abstract
We present MONET, a new multimodal dataset captured using a thermal camera mounted on a drone that flew over rural areas, and recorded human and vehicle activities. We captured MONET to study the problem of object localisation and behaviour understanding of targets undergoing large-scale variations and being recorded from different and moving viewpoints. Target activities occur in two different land sites, each with unique scene structures and cluttered backgrounds. MONET consists of approximately 53K images featuring 162K manually annotated bounding boxes. Each image is timestamp-aligned with drone metadata that includes information about attitudes, speed, altitude, and GPS coordinates. MONET is different from previous thermal drone datasets because it features multimodal data, including rural scenes captured with thermal cameras containing both person and vehicle targets, along with trajectory information and metadata. We assessed the difficulty of the dataset in terms of transfer learning between the two sites and evaluated nine object detection algorithms to identify the open challenges associated with this type of data. Project page: https://github.com/fabiopoiesi/monet-dataset.

2021

Graph-SLAM Approach for Indoor UAV Localization in Warehouse Logistics Applications

Authors
Moura, A; Antunes, J; Dias, A; Martins, A; Almeida, J;

Publication
2021 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)

Abstract
Unmanned Aerial Vehicles (UAVs) are a key ingredient in the industry and in warehouse logistics digital transformation process, providing the ability to perform automatic cyclic counting and real-time inventory, localize hard-to-find items and reach narrow storage areas. The use of UAVs poses new challenges, such as indoor autonomous localization and navigation, collision avoidance and automated UAV fleet management. This paper addresses the development of a vision-based Graph-SLAM approach for UAV indoor localization without predefined warehouse markers positions. A framework is proposed and developed to support different commercial UAV platforms, allowing the estimation in real-time of the UAV position and attitude. Indoor experimental tests were carried out in order to evaluate the performance of the developed method, comparing the results obtained with an approach based on the pre-mapped markers position indoor localization method.