Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Ana F. Sequeira holds a PhD in Electrical and Computing Engineering obtained from the Engineering Faculty of University of Porto, Portugal in 2015. Ana also holds a Master degree in Mathematical Engineering and a 5-years degree in Mathematics, both obtained from the Mathematics Department of the Science Faculty of the University Of Porto, Portugal.

Ana collaborated as a researcher at INESC TEC, a R&D institute affiliated to the University of Porto, within the Visual Computing and Machine Intelligence Group (VCMI) during her PhD studies.

Ana’s PhD studies, in the fields of computer vision and machine learning, focused on liveness detection techniques for iris and fingerprint. This research equipped Ana with a deep knowledge and diversified skills regarding the complete image processing and classification pipeline: from the pre-processing methods to the classification/decision step passing through the application of feature extraction techniques.

The post-doctoral research was pursued at the University of Reading, UK, collaborating in EU projects related to the application of biometric recognition in Border Control (FASTPASS and PROTECT projects).

This activity was followed by a short term collaboration with the company Iris Guard UK in order to research on the vulnerabilities of EyePay® technology’s to spoofing and to develop a proof-of-concept of an anti-spoofing measure.

Currently, Ana is back at INESC TEC as a Research Assistant.

During Ana’s activity as PhD and PDRA, she authored and co-authored several research publications in major international conferences and journals which attracted, to the date, over 150 citations.

Throughout her research activity, Ana developed expertise not only in computer vision/image processing topics but as well in the application of diversified machine learning techniques, from classic to deep learning methodologies.

Interest
Topics
Details

Details

  • Name

    Ana Filipa Sequeira
  • Role

    Area Manager
  • Since

    23rd February 2011
003
Publications

2025

Model compression techniques in biometrics applications: A survey

Authors
Caldeira, E; Neto, PC; Huber, M; Damer, N; Sequeira, AF;

Publication
INFORMATION FUSION

Abstract
The development of deep learning algorithms has extensively empowered humanity's task automatization capacity. However, the huge improvement in the performance of these models is highly correlated with their increasing level of complexity, limiting their usefulness in human-oriented applications, which are usually deployed in resource-constrained devices. This led to the development of compression techniques that drastically reduce the computational and memory costs of deep learning models without significant performance degradation. These compressed models are especially essential when implementing multi-model fusion solutions where multiple models are required to operate simultaneously. This paper aims to systematize the current literature on this topic by presenting a comprehensive survey of model compression techniques in biometrics applications, namely quantization, knowledge distillation and pruning. We conduct a critical analysis of the comparative value of these techniques, focusing on their advantages and disadvantages and presenting suggestions for future work directions that can potentially improve the current methods. Additionally, we discuss and analyze the link between model bias and model compression, highlighting the need to direct compression research toward model fairness in future works.

2025

Second FRCSyn-onGoing: Winning solutions and post-challenge analysis to improve face recognition with synthetic data

Authors
DeAndres-Tame, I; Tolosana, R; Melzi, P; Vera-Rodriguez, R; Kim, M; Rathgeb, C; Liu, XM; Gomez, LF; Morales, A; Fierrez, J; Ortega-Garcia, J; Zhong, ZZ; Huang, YG; Mi, YX; Ding, SH; Zhou, SG; He, S; Fu, LZ; Cong, H; Zhang, RY; Xiao, ZH; Smirnov, E; Pimenov, A; Grigorev, A; Timoshenko, D; Asfaw, KM; Low, CY; Liu, H; Wang, CY; Zuo, Q; He, ZX; Shahreza, HO; George, A; Unnervik, A; Rahimi, P; Marcel, S; Neto, PC; Huber, M; Kolf, JN; Damer, N; Boutros, F; Cardoso, JS; Sequeira, AF; Atzori, A; Fenu, G; Marras, M; Struc, V; Yu, J; Li, ZJ; Li, JC; Zhao, WS; Lei, Z; Zhu, XY; Zhang, XY; Biesseck, B; Vidal, P; Coelho, L; Granada, R; Menotti, D;

Publication
INFORMATION FUSION

Abstract
Synthetic data is gaining increasing popularity for face recognition technologies, mainly due to the privacy concerns and challenges associated with obtaining real data, including diverse scenarios, quality, and demographic groups, among others. It also offers some advantages over real data, such as the large amount of data that can be generated or the ability to customize it to adapt to specific problem-solving needs. To effectively use such data, face recognition models should also be specifically designed to exploit synthetic data to its fullest potential. In order to promote the proposal of novel Generative AI methods and synthetic data, and investigate the application of synthetic data to better train face recognition systems, we introduce the 2nd FRCSyn-onGoing challenge, based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024. This is an ongoing challenge that provides researchers with an accessible platform to benchmark (i) the proposal of novel Generative AI methods and synthetic data, and (ii) novel face recognition systems that are specifically proposed to take advantage of synthetic data. We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition such as demographic bias, domain adaptation, and performance constraints in demanding situations, such as age disparities between training and testing, changes in the pose, or occlusions. Very interesting findings are obtained in this second edition, including a direct comparison with the first one, in which synthetic databases were restricted to DCFace and GANDiffFace.

2025

Balancing Beyond Discrete Categories: Continuous Demographic Labels for Fair Face Recognition

Authors
Neto, PC; Damer, N; Cardoso, JS; Sequeira, AF;

Publication
CoRR

Abstract

2025

An Integrated and User-Friendly Platform for the Deployment of Explainable Artificial Intelligence Methods Applied to Face Recognition

Authors
Albuquerque, C; Neto, PC; Gonçalves, T; Sequeira, AF;

Publication
HCI for Cybersecurity, Privacy and Trust - 7th International Conference, HCI-CPT 2025, Held as Part of the 27th HCI International Conference, HCII 2025, Gothenburg, Sweden, June 22-27, 2025, Proceedings, Part II

Abstract
Face recognition technology, despite its advancements and increasing accuracy, still presents significant challenges in explainability and ethical concerns, especially when applied in sensitive domains such as surveillance, law enforcement, and access control. The opaque nature of deep learning models jeopardises transparency, bias, and user trust. Concurrently, the proliferation of web applications presents a unique opportunity to develop accessible and interactive tools for demonstrating and analysing these complex systems. These tools can facilitate model decision exploration with various images, aiding in bias mitigation or enhancing users’ trust by allowing them to see the model in action and understand its reasoning. We propose an explainable face recognition web application designed to support enrolment, identification, authentication, and verification while providing visual explanations through pixel-wise importance maps to clarify the model’s decision-making process. The system is built in compliance with the European Union General Data Protection Regulation, ensuring data privacy and user control over personal information. The application is also designed for scalability, capable of efficiently managing large datasets. Load tests conducted on databases containing up to 1,000,000 images confirm its efficiency. This scalability ensures robust performance and a seamless user experience even with database growth. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2024

Massively Annotated Datasets for Assessment of Synthetic and Real Data in Face Recognition

Authors
Neto, PC; Mamede, RM; Albuquerque, C; Gonçalves, T; Sequeira, AF;

Publication
2024 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, FG 2024

Abstract
Face recognition applications have grown in parallel with the size of datasets, complexity of deep learning models and computational power. However, while deep learning models evolve to become more capable and computational power keeps increasing, the datasets available are being retracted and removed from public access. Privacy and ethical concerns are relevant topics within these domains. Through generative artificial intelligence, researchers have put efforts into the development of completely synthetic datasets that can be used to train face recognition systems. Nonetheless, the recent advances have not been sufficient to achieve performance comparable to the state-of-the-art models trained on real data. To study the drift between the performance of models trained on real and synthetic datasets, we leverage a massive attribute classifier (MAC) to create annotations for four datasets: two real and two synthetic. From these annotations, we conduct studies on the distribution of each attribute within all four datasets. Additionally, we further inspect the differences between real and synthetic datasets on the attribute set. When comparing through the Kullback-Leibler divergence we have found differences between real and synthetic samples. Interestingly enough, we have verified that while real samples suffice to explain the synthetic distribution, the opposite could not be further from being true.

Supervised
thesis

2023

Explainable Artificial Intelligence – Detecting biases for Interpretable and Fair Face Recognition Deep Learning Models

Author
Ana Dias Teixeira de Viseu Cardoso

Institution

2023

Don’t look away! Keeping the human in the loop with an interactive active learning platform

Author
Fábio Manuel Taveira da Cunha

Institution

2021

Explainable and Interpretable Face Presentation Attack Detection Methods

Author
Murilo Leite Nóbrega

Institution

2021

Deep Learning Face Emotion Recognition

Author
Pedro Duarte Lopes

Institution

2020

Head Pose Estimation for Biometric Recognition Systems

Author
João Manuel Guedes Ferreira

Institution