Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Ana F. Sequeira holds a PhD in Electrical and Computing Engineering obtained from the Engineering Faculty of University of Porto, Portugal in 2015. Ana also holds a Master degree in Mathematical Engineering and a 5-years degree in Mathematics, both obtained from the Mathematics Department of the Science Faculty of the University Of Porto, Portugal.

Ana collaborated as a researcher at INESC TEC, a R&D institute affiliated to the University of Porto, within the Visual Computing and Machine Intelligence Group (VCMI) during her PhD studies.

Ana’s PhD studies, in the fields of computer vision and machine learning, focused on liveness detection techniques for iris and fingerprint. This research equipped Ana with a deep knowledge and diversified skills regarding the complete image processing and classification pipeline: from the pre-processing methods to the classification/decision step passing through the application of feature extraction techniques.

The post-doctoral research was pursued at the University of Reading, UK, collaborating in EU projects related to the application of biometric recognition in Border Control (FASTPASS and PROTECT projects).

This activity was followed by a short term collaboration with the company Iris Guard UK in order to research on the vulnerabilities of EyePay® technology’s to spoofing and to develop a proof-of-concept of an anti-spoofing measure.

Currently, Ana is back at INESC TEC as a Research Assistant.

During Ana’s activity as PhD and PDRA, she authored and co-authored several research publications in major international conferences and journals which attracted, to the date, over 150 citations.

Throughout her research activity, Ana developed expertise not only in computer vision/image processing topics but as well in the application of diversified machine learning techniques, from classic to deep learning methodologies.

Interest
Topics
Details

Details

  • Name

    Ana Filipa Sequeira
  • Role

    Area Manager
  • Since

    23rd February 2011
003
Publications

2025

Model compression techniques in biometrics applications: A survey

Authors
Caldeira, E; Neto, PC; Huber, M; Damer, N; Sequeira, AF;

Publication
INFORMATION FUSION

Abstract
The development of deep learning algorithms has extensively empowered humanity's task automatization capacity. However, the huge improvement in the performance of these models is highly correlated with their increasing level of complexity, limiting their usefulness in human-oriented applications, which are usually deployed in resource-constrained devices. This led to the development of compression techniques that drastically reduce the computational and memory costs of deep learning models without significant performance degradation. These compressed models are especially essential when implementing multi-model fusion solutions where multiple models are required to operate simultaneously. This paper aims to systematize the current literature on this topic by presenting a comprehensive survey of model compression techniques in biometrics applications, namely quantization, knowledge distillation and pruning. We conduct a critical analysis of the comparative value of these techniques, focusing on their advantages and disadvantages and presenting suggestions for future work directions that can potentially improve the current methods. Additionally, we discuss and analyze the link between model bias and model compression, highlighting the need to direct compression research toward model fairness in future works.

2025

MST-KD: Multiple Specialized Teachers Knowledge Distillation for Fair Face Recognition

Authors
Caldeira, E; Cardoso, JS; Sequeira, AF; Neto, PC;

Publication
COMPUTER VISION-ECCV 2024 WORKSHOPS, PT XV

Abstract
As in school, one teacher to cover all subjects is insufficient to distill equally robust information to a student. Hence, each subject is taught by a highly specialised teacher. Following a similar philosophy, we propose a multiple specialized teacher framework to distill knowledge to a student network. In our approach, directed at face recognition use cases, we train four teachers on one specific ethnicity, leading to four highly specialized and biased teachers. Our strategy learns a project of these four teachers into a common space and distill that information to a student network. Our results highlighted increased performance and reduced bias for all our experiments. In addition, we further show that having biased/specialized teachers is crucial by showing that our approach achieves better results than when knowledge is distilled from four teachers trained on balanced datasets. Our approach represents a step forward to the understanding of the importance of ethnicity-specific features.

2025

Fairness Under Cover: Evaluating the Impact of Occlusions on Demographic Bias in Facial Recognition

Authors
Mamede, RM; Neto, PC; Sequeira, AF;

Publication
COMPUTER VISION-ECCV 2024 WORKSHOPS, PT XXI

Abstract
This study investigates the effects of occlusions on the fairness of face recognition systems, particularly focusing on demographic biases. Using the Racial Faces in the Wild (RFW) dataset and synthetically added realistic occlusions, we evaluate their effect on the performance of face recognition models trained on the BUPT-Balanced and BUPT-GlobalFace datasets. We note increases in the dispersion of FMR, FNMR, and accuracy alongside decreases in fairness according to Equalized Odds, Demographic Parity, STD of Accuracy, and Fairness Discrepancy Rate. Additionally, we utilize a pixel attribution method to understand the importance of occlusions in model predictions, proposing a new metric, Face Occlusion Impact Ratio (FOIR), that quantifies the extent to which occlusions affect model performance across different demographic groups. Our results indicate that occlusions exacerbate existing demographic biases, with models placing higher importance on occlusions in an unequal fashion across demographics.

2025

How Knowledge Distillation Mitigates the Synthetic Gap in Fair Face Recognition

Authors
Neto, PC; Colakovic, I; Karakatic, S; Sequeira, AF;

Publication
COMPUTER VISION-ECCV 2024 WORKSHOPS, PT XX

Abstract
Leveraging the capabilities of Knowledge Distillation (KD) strategies, we devise a strategy to fight the recent retraction of face recognition datasets. Given a pretrained Teacher model trained on a real dataset, we show that carefully utilising synthetic datasets, or a mix between real and synthetic datasets to distil knowledge from this teacher to smaller students can yield surprising results. In this sense, we trained 33 different models with and without KD, on different datasets, with different architectures and losses. And our findings are consistent, using KD leads to performance gains across all ethnicities and decreased bias. In addition, it helps to mitigate the performance gap between real and synthetic datasets. This approach addresses the limitations of synthetic data training, improving both the accuracy and fairness of face recognition models.

2025

Second FRCSyn-onGoing: Winning solutions and post-challenge analysis to improve face recognition with synthetic data

Authors
DeAndres-Tame, I; Tolosana, R; Melzi, P; Vera-Rodriguez, R; Kim, M; Rathgeb, C; Liu, XM; Gomez, LF; Morales, A; Fierrez, J; Ortega-Garcia, J; Zhong, ZZ; Huang, YG; Mi, YX; Ding, SH; Zhou, SG; He, S; Fu, LZ; Cong, H; Zhang, RY; Xiao, ZH; Smirnov, E; Pimenov, A; Grigorev, A; Timoshenko, D; Asfaw, KM; Low, CY; Liu, H; Wang, CY; Zuo, Q; He, ZX; Shahreza, HO; George, A; Unnervik, A; Rahimi, P; Marcel, S; Neto, PC; Huber, M; Kolf, JN; Damer, N; Boutros, F; Cardoso, JS; Sequeira, AF; Atzori, A; Fenu, G; Marras, M; Struc, V; Yu, J; Li, ZJ; Li, JC; Zhao, WS; Lei, Z; Zhu, XY; Zhang, XY; Biesseck, B; Vidal, P; Coelho, L; Granada, R; Menotti, D;

Publication
INFORMATION FUSION

Abstract
Synthetic data is gaining increasing popularity for face recognition technologies, mainly due to the privacy concerns and challenges associated with obtaining real data, including diverse scenarios, quality, and demographic groups, among others. It also offers some advantages over real data, such as the large amount of data that can be generated or the ability to customize it to adapt to specific problem-solving needs. To effectively use such data, face recognition models should also be specifically designed to exploit synthetic data to its fullest potential. In order to promote the proposal of novel Generative AI methods and synthetic data, and investigate the application of synthetic data to better train face recognition systems, we introduce the 2nd FRCSyn-onGoing challenge, based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024. This is an ongoing challenge that provides researchers with an accessible platform to benchmark (i) the proposal of novel Generative AI methods and synthetic data, and (ii) novel face recognition systems that are specifically proposed to take advantage of synthetic data. We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition such as demographic bias, domain adaptation, and performance constraints in demanding situations, such as age disparities between training and testing, changes in the pose, or occlusions. Very interesting findings are obtained in this second edition, including a direct comparison with the first one, in which synthetic databases were restricted to DCFace and GANDiffFace.

Supervised
thesis

2023

Don’t look away! Keeping the human in the loop with an interactive active learning platform

Author
Fábio Manuel Taveira da Cunha

Institution

2023

Explainable Artificial Intelligence – Detecting biases for Interpretable and Fair Face Recognition Deep Learning Models

Author
Ana Dias Teixeira de Viseu Cardoso

Institution

2021

Explainable and Interpretable Face Presentation Attack Detection Methods

Author
Murilo Leite Nóbrega

Institution

2021

Deep Learning Face Emotion Recognition

Author
Pedro Duarte Lopes

Institution

2020

Explainable Artificial Intelligence For Biometric Analysis

Author
Pedro Carneiro Neto

Institution