Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Nuno Azevedo Silva
  • Cargo

    Investigador Auxiliar
  • Desde

    03 dezembro 2012
011
Publicações

2024

Autonomous and intelligent optical tweezers for improving the reliability and throughput of single particle analysis

Autores
Teixeira, J; Moreira, FC; Oliveira, J; Rocha, V; Jorge, PAS; Ferreira, T; Silva, NA;

Publicação
MEASUREMENT SCIENCE AND TECHNOLOGY

Abstract
Optical tweezers are an interesting tool to enable single cell analysis, especially when coupled with optical sensing and advanced computational methods. Nevertheless, such approaches are still hindered by system operation variability, and reduced amount of data, resulting in performance degradation when addressing new data sets. In this manuscript, we describe the deployment of an automatic and intelligent optical tweezers setup, capable of trapping, manipulating, and analyzing the physical properties of individual microscopic particles in an automatic and autonomous manner, at a rate of 4 particle per min, without user intervention. Reproducibility of particle identification with the help of machine learning algorithms is tested both for manual and automatic operation. The forward scattered signal of the trapped PMMA and PS particles was acquired over two days and used to train and test models based on the random forest classifier. With manual operation the system could initially distinguish between PMMA and PS with 90% accuracy. However, when using test datasets acquired on a different day it suffered a loss of accuracy around 24%. On the other hand, the automatic system could classify four types of particles with 79% accuracy maintaining performance (around 1% variation) even when tested with different datasets. Overall, the automated system shows an increased reproducibility and stability of the acquired signals allowing for the confirmation of the proportionality relationship expected between the particle size and its friction coefficient. These results demonstrate that this approach may support the development of future systems with increased throughput and reliability, for biosciences applications.

2024

Identification of Relevant Spectral Ranges in Laser-Induced Breakdown Spectroscopy Imaging Using the Fourier Space

Autores
Lopes, T; Capela, D; Ferreira, MFS; Guimaraes, D; Jorge, PAS; Silva, NA;

Publicação
APPLIED SPECTROSCOPY

Abstract
Laser-induced breakdown spectroscopy (LIBS) imaging has now a well-established position in the subject of spectral imaging, leveraging multi-element detection capabilities and fast acquisition rates to support applications both at academic and technological levels. In current applications, the standard processing pipeline to explore LIBS imaging data sets revolves around identifying an element that is suspected to exist within the sample and generating maps based on its characteristic emission lines. Such an approach requires some previous expert knowledge both on the technique and on the sample side, which hinders a wider and more transparent accessibility of the LIBS imaging technique by non-specialists. To address this issue, techniques based on visual analysis or peak finding algorithms are applied on the average or maximum spectrum, and may be employed for automatically identifying relevant spectral regions. Yet, maps containing relevant information may often be discarded due to low signal-to-noise ratios or interference with other elements. In this context, this work presents an agnostic processing pipeline based on a spatial information ratio metric that is computed in the Fourier space for each wavelength and that allows for the identification of relevant spectral ranges in LIBS. The results suggest a more robust and streamlined approach to feature extraction in LIBS imaging compared with traditional inspection of the spectra, which can introduce novel opportunities not only for spectral data analysis but also in the field of data compression.

2024

Exploring the dynamics of the Kelvin-Helmholtz instability in paraxial fluids of light

Autores
Ferreira, TD; Garwola, J; Silva, NA;

Publicação
PHYSICAL REVIEW A

Abstract
Paraxial fluids of light have recently emerged as promising analog physical simulators of quantum fluids using laser propagation inside nonlinear optical media. In particular, recent works have explored the versatility of such systems for the observation of two-dimensional quantum-like turbulence regimes, dominated by quantized vortex formation and interaction that results in distinctive kinetic energy power laws and inverse energy cascades. In this manuscript, we explore a regime analog to Kelvin-Helmholtz instability to examine in further detail the qualitative dynamics involved in the transition from smooth laminar flow to turbulence at the interface of two fluids with distinct velocities. Both numerical and experimental results reveal the formation of a vortex sheet as expected, with a quantized number of vortices determined by initial conditions. Using an effective length transformation scale we get a deeper insight into the vortex formation phase, observing the appearance of characteristic power laws in the incompressible kinetic energy spectrum that are related to the single vortex structures. The results enclosed demonstrate the versatility of paraxial fluids of light and may set the stage for the future observation of distinct classes of phenomena recently predicted to occur in these systems, such as radiant instability and superradiance.

2024

Optical Extreme Learning Machines with Atomic Vapors

Autores
Silva, NA; Rocha, V; Ferreira, TD;

Publicação
ATOMS

Abstract
Extreme learning machines explore nonlinear random projections to perform computing tasks on high-dimensional output spaces. Since training only occurs at the output layer, the approach has the potential to speed up the training process and the capacity to turn any physical system into a computing platform. Yet, requiring strong nonlinear dynamics, optical solutions operating at fast processing rates and low power can be hard to achieve with conventional nonlinear optical materials. In this context, this manuscript explores the possibility of using atomic gases in near-resonant conditions to implement an optical extreme learning machine leveraging their enhanced nonlinear optical properties. Our results suggest that these systems have the potential not only to work as an optical extreme learning machine but also to perform these computations at the few-photon level, paving opportunities for energy-efficient computing solutions.

2023

Intelligent grids for faster elemental mapping with Laser-induced breakdown spectroscopy

Autores
Capela, D; Ferreira, M; Lima, A; Jorge, P; Guimarães, D; Silva, NA;

Publicação
Results in Optics

Abstract
Laser-induced breakdown spectroscopy is a spectroscopic technique that allows for fast elemental mapping of heterogeneous samples. Yet, detailed maps need high-resolution sampling grids, which can turn the task into a time-consuming process and can increase sample damage. In this work, we present the implementation of an imaged-based intelligent mesh algorithm that makes use of superpixel segmentation to optimize elemental mapping processes. Our results show that the approach can increase the elemental mapping resolution and decrease acquisition times, fostering opportunities for applications that benefit from minimal sample damage such as heritage analysis, or timely analysis such as industrial applications. © 2022 The Author(s)

Teses
supervisionadas

2023

Advances in Paraxial Fluids of Light with Photorefractive Media

Autor
Tiago David da Silva Ferreira

Instituição
UP-FCUP

2023

Harnessing Nonlinear Systems for Neuromorphic Computing Solutions

Autor
Juan Manuel Vieira da Silva

Instituição
UP-FCUP

2023

Transportation Mode Detection for Real Mobile Crowdsourced Datasets

Autor
Akilu Rilwan Muhammad

Instituição
UP-FEUP

2023

Enterprise Application Integration (EAI) on a Freight Forwarder

Autor
João Carlos Dias Neto

Instituição
UP-FCUP

2023

Deepfake Generation for use in Dictionary Attacks on Facial Recognition Systems

Autor
Vasco Mucha Barros

Instituição
UP-FCUP