Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Diana Viegas
  • Cargo

    Investigador Sénior
  • Desde

    01 maio 2004
  • Nacionalidade

    Portugal
  • Contactos

    +351228340554
    diana.viegas@inesctec.pt
Publicações

2025

NETTAG+ - Towards a cleaner fishing practice and reducing the environmental impact of lost fishing gear

Autores
Viegas, D; Martins, A; Neasham, J; Ramos, S; Almeida, M;

Publicação

Abstract
Abandoned, Lost, or otherwise Discarded Fishing Gear (ALDFG) has a great impact on marine ecosystems. This is not only due to the direct contribution to marine litter production with particular emphasis on plastics but also to the effects of ghost fishing.The Nettag+ project aims to reduce these impacts by acting on three main lines of action: prevention, avoidance, and mitigation. In the first line, direct action and collaboration with fishers and nature protection organizations around Europe aim to establish the fishermen community as guardians of the ocean. These actions with active fishers' collaboration range from training and dissemination activities related to marine litter and ocean protection to direct measures in day-to-day work to minimize and recover litter from the sea.In the prevention line, an acoustic tag designed explicitly for the location of ALDFG was developed in collaboration with research institutions and fishing gear manufacturers. It can be integrated into the fishing equipment for future tracking and recovery. This tool can reduce lost fishing gear retrieval costs and is complemented with robotic solutions to support retrieving operations.To mitigate the effects of existing untagged ALDFG, multisensorial  detection algorithms are being developed to detect and map ALDFG on the sea and to take advantage of autonomous and robotic systems to perform this task.

2023

TEC4SEA-Developing maritime technology for a sustainable blue economy

Autores
Monica, P; Cruz, N; Almeida, JM; Silva, A; Silva, E; Pinho, C; Almeida, C; Viegas, D; Pessoa, LM; Lima, AP; Martins, A; Zabel, F; Ferreira, BM; Dias, I; Campos, R; Araujo, J; Coelho, LC; Jorge, PS; Mendes, J;

Publicação
OCEANS 2023 - LIMERICK

Abstract
One way to mitigate the high costs of doing science or business at sea is to create technological infrastructures possessing all the skills and resources needed for successful maritime operations, and make those capabilities and skills available to the external entities requiring them. By doing so, the individual economic and scientific agents can be spared the enormous effort of creating and maintaining their own, particular set of equivalent capabilities, thus drastically lowering their initial operating costs. In addition to cost savings, operating based on fully-fledged, shared infrastructures not only allows the use of more advanced scientific equipment and highly skilled personnel, but it also enables the business teams (be it industry or research) to focus on their goals, rather than on equipment, logistics, and support. This paper will describe the TEC4SEA infrastructure, created precisely to operate as described. This infrastructure has been under implementation in the last few years, and has now entered its operational phase. This paper will describe it, present its current portfolio of services, and discuss the most relevant assets and facilities that have been recently acquired, so that the research and industrial communities requiring the use of such assets can fully evaluate their adequacy for their own purposes and projects.

2023

TRIDENT - Technology based impact assessment tool foR sustaInable, transparent Deep sEa miNing exploraTion and exploitation: A project overview

Autores
Silva, E; Viegas, D; Martins, A; Almeida, J; Almeida, C; Neves, B; Madureira, P; Wheeler, AJ; Salavasidis, G; Phillips, A; Schaap, A; Murton, B; Berry, A; Weir, A; Dooly, G; Omerdic, E; Toal, D; Collins, PC; Miranda, M; Petrioli, C; Rodríguez, CB; Demoor, D; Drouet, C; El Serafy, G; Jesus, SM; Dañobeitia, J; Tegas, V; Cusi, S; Lopes, L; Bodo, B; Beguery, L; VanDam, S; Dumortier, J; Neves, L; Srivastava, V; Dahlgren, TG; Hestetun, JT; Eiras, R; Caldeira, R; Rossi, C; Spearman, J; Somoza, L; González, FJ; Bartolomé, R; Bahurel, P;

Publicação
OCEANS 2023 - LIMERICK

Abstract
By creating a dependable, transparent, and cost-effective system for forecasting and ongoing environmental impact monitoring of exploration and exploitation activities in the deep sea, TRIDENT seeks to contribute to the sustainable exploitation of seabed mineral resources. In order to operate autonomously in remote locations under harsh conditions and send real-time data to authorities in charge of granting licenses and providing oversight, this system will create and integrate new technology and innovative solutions. The efficient monitoring and inspection system that will be created will abide by national and international legal frameworks. At the sea surface, mid-water, and the bottom, TRIDENT will identify all pertinent physical, chemical, geological, and biological characteristics that must be monitored. It will also look for data gaps and suggest procedures for addressing them. These are crucial actions to take in order to produce accurate indicators of excellent environmental status, statistically robust environmental baselines, and thresholds for significant impact, allowing for the standardization of methods and tools. In order to monitor environmental parameters on mining and reference areas at representative spatial and temporal scales, the project consortium will thereafter develop and test an integrated system of stationary and mobile observatory platforms outfitted with the most recent automatic sensors and samplers. The system will incorporate high-capacity data processing pipelines able to gather, transmit, process, and display monitoring data in close to real-time to facilitate prompt actions for preventing major harm to the environment. Last but not least, it will offer systemic and technological solutions for predicting probable impacts of applying the developed monitoring and mitigation techniques.

2022

Feedfirst: Intelligent monitoring system for indoor aquaculture tanks

Autores
Teixeira, B; Lima, AP; Pinho, C; Viegas, D; Dias, N; Silva, H; Almeida, J;

Publicação
2022 OCEANS HAMPTON ROADS

Abstract
The Feedfirst Intelligent Monitoring System is a novel tool for intelligent monitoring of fish nurseries in aquaculture scenarios, mainly focusing on monitoring three essential items: water quality control, biomass estimation, and automated feeding. The system is based on machine vision techniques for fish larvae population size detection, and larvae biomass estimation is monitored through size measurement. We also show that the perception-actuation loop in automated fish tanks can be closed by using the vision system output to influence feeding procedures. The proposed solution was tested in a real tank in an aquaculture setting with real-time performance and logging capabilities.

2021

Hyperspectral Imaging System for Marine Litter Detection

Autores
Freitas, S; Silva, H; Almeida, C; Viegas, D; Amaral, A; Santos, T; Dias, A; Jorge, PAS; Pham, CK; Moutinho, J; Silva, E;

Publicação
OCEANS 2021: SAN DIEGO - PORTO

Abstract
This work addresses the use of hyperspectral imaging systems for remote detection of marine litter concentrations in oceanic environments. The work consisted on mounting an off-the-shelf hyperspectral imaging system (400-2500 nm) in two aerial platforms: manned and unmanned, and performing data acquisition to develop AI methods capable of detecting marine litter concentrations at the water surface. We performed the campaigns at Porto Pim Bay, Fail Island, Azores, resorting to artificial targets built using marine litter samples. During this work, we also developed a Convolutional Neural Network (CNN-3D), using spatial and spectral information to evaluate deep learning methods to detect marine litter in an automated manner. Results show over 84% overall accuracy (OA) in the detection and classification of the different types of marine litter samples present in the artificial targets.