Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    Vanessa Freitas Silva
  • Role

    Researcher
  • Since

    16th November 2016
Publications

2023

MHVG2MTS: Multilayer Horizontal Visibility Graphs for Multivariate Time Series Analysis

Authors
Silva, VF; Silva, ME; Ribeiro, P; Silva, FMA;

Publication
CoRR

Abstract

2023

Multilayer Quantile Graph for Multivariate Time Series Analysis and Dimensionality Reduction

Authors
Silva, VF; Silva, ME; Ribeiro, P; Silva, FMA;

Publication
CoRR

Abstract

2022

Novel features for time series analysis: a complex networks approach

Authors
Silva, VF; Silva, ME; Ribeiro, P; Silva, F;

Publication
DATA MINING AND KNOWLEDGE DISCOVERY

Abstract
Being able to capture the characteristics of a time series with a feature vector is a very important task with a multitude of applications, such as classification, clustering or forecasting. Usually, the features are obtained from linear and nonlinear time series measures, that may present several data related drawbacks. In this work we introduce NetF as an alternative set of features, incorporating several representative topological measures of different complex networks mappings of the time series. Our approach does not require data preprocessing and is applicable regardless of any data characteristics. Exploring our novel feature vector, we are able to connect mapped network features to properties inherent in diversified time series models, showing that NetF can be useful to characterize time data. Furthermore, we also demonstrate the applicability of our methodology in clustering synthetic and benchmark time series sets, comparing its performance with more conventional features, showcasing how NetF can achieve high-accuracy clusters. Our results are very promising, with network features from different mapping methods capturing different properties of the time series, adding a different and rich feature set to the literature.

2021

Time series analysis via network science: Concepts and algorithms

Authors
Silva, VF; Silva, ME; Ribeiro, P; Silva, F;

Publication
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY

Abstract
There is nowadays a constant flux of data being generated and collected in all types of real world systems. These data sets are often indexed by time, space, or both requiring appropriate approaches to analyze the data. In univariate settings, time series analysis is a mature field. However, in multivariate contexts, time series analysis still presents many limitations. In order to address these issues, the last decade has brought approaches based on network science. These methods involve transforming an initial time series data set into one or more networks, which can be analyzed in depth to provide insight into the original time series. This review provides a comprehensive overview of existing mapping methods for transforming time series into networks for a wide audience of researchers and practitioners in machine learning, data mining, and time series. Our main contribution is a structured review of existing methodologies, identifying their main characteristics, and their differences. We describe the main conceptual approaches, provide authoritative references and give insight into their advantages and limitations in a unified way and language. We first describe the case of univariate time series, which can be mapped to single layer networks, and we divide the current mappings based on the underlying concept: visibility, transition, and proximity. We then proceed with multivariate time series discussing both single layer and multiple layer approaches. Although still very recent, this research area has much potential and with this survey we intend to pave the way for future research on the topic. This article is categorized under: Fundamental Concepts of Data and Knowledge > Data Concepts Fundamental Concepts of Data and Knowledge > Knowledge Representation