Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Tomé Albuquerque received a B.Sc. degree in biochemistry from University of Aveiro and a M.S. degree in biomedical engineering from University of Porto. He is currently pursuing the Ph.D. degree with the University of Porto. He is also a Researcher at INESC TEC since 2019. His main research interests include machine learning, computer vision, and medical imaging diagnosis.

Interest
Topics
Details

Details

  • Name

    Tomé Mendes Albuquerque
  • Role

    Research Assistant
  • Since

    10th October 2019
001
Publications

2023

Rethinking low-cost microscopy workflow: Image enhancement using deep based Extended Depth of Field methods

Authors
Albuquerque, T; Rosado, L; Cruz, RPM; Vasconcelos, MJM; Oliveira, T; Cardoso, JS;

Publication
Intell. Syst. Appl.

Abstract
Microscopic techniques in low-to-middle income countries are constrained by the lack of adequate equipment and trained operators. Since light microscopy delivers crucial methods for the diagnosis and screening of numerous diseases, several efforts have been made by the scientific community to develop low-cost devices such as 3D-printed portable microscopes. Nevertheless, these devices present some drawbacks that directly affect image quality: the capture of the samples is done via mobile phones; more affordable lenses are usually used, leading to poorer physical properties and images with lower depth of field; misalignments in the microscopic set-up regarding optical, mechanical, and illumination components are frequent, causing image distortions such as chromatic aberrations. This work investigates several pre-processing methods to tackle the presented issues and proposed a new workflow for low-cost microscopy. Additionally, two new deep learning models based on Convolutional Neural Networks are also proposed (EDoF-CNN-Fast and EDoF-CNN-Pairwise) to generate Extended Depth of Field (EDoF) images, and compared against state-of-the-art approaches. The models were tested using two different datasets of cytology microscopic images: public Cervix93 and a new dataset that has been made publicly available containing images captured with µSmartScope. Experimental results demonstrate that the proposed workflow can achieve state-of-the-art performance when generating EDoF images from low-cost microscopes. © 2022 The Author(s)

2023

Fill in the blank for fashion complementary outfit product Retrieval: VISUM summer school competition

Authors
Castro, E; Ferreira, PM; Rebelo, A; Rio-Torto, I; Capozzi, L; Ferreira, MF; Goncalves, T; Albuquerque, T; Silva, W; Afonso, C; Sousa, RG; Cimarelli, C; Daoudi, N; Moreira, G; Yang, HY; Hrga, I; Ahmad, J; Keswani, M; Beco, S;

Publication
MACHINE VISION AND APPLICATIONS

Abstract
Every year, the VISion Understanding and Machine intelligence (VISUM) summer school runs a competition where participants can learn and share knowledge about Computer Vision and Machine Learning in a vibrant environment. 2021 VISUM's focused on applying those methodologies in fashion. Recently, there has been an increase of interest within the scientific community in applying computer vision methodologies to the fashion domain. That is highly motivated by fashion being one of the world's largest industries presenting a rapid development in e-commerce mainly since the COVID-19 pandemic. Computer Vision for Fashion enables a wide range of innovations, from personalized recommendations to outfit matching. The competition enabled students to apply the knowledge acquired in the summer school to a real-world problem. The ambition was to foster research and development in fashion outfit complementary product retrieval by leveraging vast visual and textual data with domain knowledge. For this, a new fashion outfit dataset (acquired and curated by FARFETCH) for research and benchmark purposes is introduced. Additionally, a competitive baseline with an original negative sampling process for triplet mining was implemented and served as a starting point for participants. The top 3 performing methods are described in this paper since they constitute the reference state-of-the-art for this particular problem. To our knowledge, this is the first challenge in fashion outfit complementary product retrieval. Moreover, this joint project between academia and industry brings several relevant contributions to disseminating science and technology, promoting economic and social development, and helping to connect early-career researchers to real-world industry challenges.

2023

Unimodal Distributions for Ordinal Regression

Authors
Cardoso, JS; Cruz, R; Albuquerque, T;

Publication
CoRR

Abstract

2022

Quasi-Unimodal Distributions for Ordinal Classification

Authors
Albuquerque, T; Cruz, R; Cardoso, JS;

Publication
MATHEMATICS

Abstract
Ordinal classification tasks are present in a large number of different domains. However, common losses for deep neural networks, such as cross-entropy, do not properly weight the relative ordering between classes. For that reason, many losses have been proposed in the literature, which model the output probabilities as following a unimodal distribution. This manuscript reviews many of these losses on three different datasets and suggests a potential improvement that focuses the unimodal constraint on the neighborhood around the true class, allowing for a more flexible distribution, aptly called quasi-unimodal loss. For this purpose, two constraints are proposed: A first constraint concerns the relative order of the top-three probabilities, and a second constraint ensures that the remaining output probabilities are not higher than the top three. Therefore, gradient descent focuses on improving the decision boundary around the true class in detriment to the more distant classes. The proposed loss is found to be competitive in several cases.

2022

Quality Control in Digital Pathology: Automatic Fragment Detection and Counting

Authors
Albuquerque, T; Moreira, A; Barros, B; Montezuma, D; Oliveira, SP; Neto, PC; Monteiro, JC; Ribeiro, L; Gonçalves, S; Monteiro, A; Pinto, IM; Cardoso, JS;

Publication
44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society, EMBC 2022, Glasgow, Scotland, United Kingdom, July 11-15, 2022

Abstract
Manual assessment of fragments during the pro-cessing of pathology specimens is critical to ensure that the material available for slide analysis matches that captured during grossing without losing valuable material during this process. However, this step is still performed manually, resulting in lost time and delays in making the complete case available for evaluation by the pathologist. To overcome this limitation, we developed an autonomous system that can detect and count the number of fragments contained on each slide. We applied and compared two different methods: conventional machine learning methods and deep convolutional network methods. For conventional machine learning methods, we tested a two-stage approach with a supervised classifier followed by unsupervised hierarchical clustering. In addition, Fast R-CNN and YOLOv5, two state-of-the-art deep learning models for detection, were used and compared. All experiments were performed on a dataset comprising 1276 images of colorec-tal biopsy and polypectomy specimens manually labeled for fragment/set detection. The best results were obtained with the YOLOv5 architecture with a map@0.5 of 0.977 for fragment/set detection.