Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    Tomás Barosa Santos
  • Role

    Research Assistant
  • Since

    16th February 2024
001
Publications

2025

A MILP Approach to Optimising Energy Storage in a Commercial Building

Authors
None Tomás Barosa Santos; None Filipe Tadeu Oliveira; None Hermano Bernardo;

Publication
Renewable Energy and Power Quality Journal

Abstract
To achieve carbon neutrality by 2050, commercial buildings have installed photovoltaic systems to reduce carbon emissions and operational costs. Nevertheless, PV generation does not always match the building’s energy demand profile, therefore storage systems are needed to store excess energy and supply it when necessary. This paper presents a Mixed Integer Linear Programming optimisation algorithm designed to schedule the operation of the electric storage system, aiming to minimise the building’s energy-related costs. An annual hourly simulation of the optimised system was performed to assess the cost reduction. To prevent excessive operation of the electric storage system, an approach to penalise low energy charging was studied, with results showing a significant increase in the system’s lifespan.

2025

Optimisation-Based Sensitivity Analysis of PV and Energy Storage Sizing in Commercial Buildings

Authors
Santos, TB; Silva, CS; Bernardo, H;

Publication
2025 9TH INTERNATIONAL YOUNG ENGINEERS FORUM ON ELECTRICAL AND COMPUTER ENGINEERING, YEF-ECE

Abstract
In recent years, non-residential buildings have increasingly adopted renewable energy generation systems to align with the European Union's goal of achieving carbon neutrality by 2050. However, energy storage systems play a fundamental role in maximising the use of the generated renewable energy. Due to their high acquisition costs, adequately sizing these systems is essential. Moreover, applying an optimal scheduling strategy for energy storage operation can significantly improve the economic viability of such systems by reducing energy-related costs. In this paper, a MILP-based optimisation algorithm-incorporating battery lifespan constraints-is applied to a reference commercial building to schedule the operation of the storage system. A sensitivity analysis on the installed photovoltaic power and energy storage capacity is performed to evaluate their impact on the economic and operational performance of the optimisation algorithm under different sizing configurations.