Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
About

About

I hold a PhD on Computer Science and 'im an Assistant Professor of Computer Science at the Polytechnic Institute of Porto. I'm also a researcher in the field of e-learning interoperability and programming languages learning at the Center for Research in Advanced Computing Systems (CRACS) research group of INESC TEC Porto. I'm also the author of 5 books regarding Android development and almost 100 scientific publications focused on computer science education.

Interest
Topics
Details

Details

  • Name

    Ricardo Queirós
  • Cluster

    Computer Science
  • Role

    Senior Researcher
  • Since

    01st January 2012
Publications

2018

CSS Preprocessing: Tools and Automation Techniques

Authors
Queirós, R;

Publication
Information

Abstract
Cascading Style Sheets (CSS) is a W3C specification for a style sheet language used for describing the presentation of a document written in a markup language, more precisely, for styling Web documents. However, in the last few years, the landscape for CSS development has changed dramatically with the appearance of several languages and tools aiming to help developers build clean, modular and performance-aware CSS. These new approaches give developers mechanisms to preprocess CSS rules through the use of programming constructs, defined as CSS preprocessors, with the ultimate goal to bring those missing constructs to the CSS realm and to foster stylesheets structured programming. At the same time, a new set of tools appeared, defined as postprocessors, for extension and automation purposes covering a broad set of features ranging from identifying unused and duplicate code to applying vendor prefixes. With all these tools and techniques in hands, developers need to provide a consistent workflow to foster CSS modular coding. This paper aims to present an introductory survey on the CSS processors. The survey gathers information on a specific set of processors, categorizes them and compares their features regarding a set of predefined criteria such as: maturity, coverage and performance. Finally, we propose a basic set of best practices in order to setup a simple and pragmatic styling code workflow. © 2018 by the authors.

2018

Fostering Students-Driven Learning of Computer Programming with an Ensemble of E-Learning Tools

Authors
Queirós, R; Leal, JP;

Publication
Trends and Advances in Information Systems and Technologies - Volume 2 [WorldCIST'18, Naples, Italy, March 27-29, 2018]

Abstract
Learning through practice is crucial to acquire a complex skill. Nevertheless, learning is only effective if students have at their disposal a wide range of exercises that cover all the course syllabus and if their solutions are promptly evaluated and given the appropriate feedback. Currently the teaching-learning process in complex domains, such as computer programming, is characterized by an extensive curricula and a high enrolment of students. This poses a great workload for faculty and teaching assistants responsible for the creation, delivering and assessment of student exercises. In order to address these issues, we created an e-learning framework - called Ensemble - as a conceptual tool to organize and facilitate technical interoperability among systems and services in domains that use complex evaluation. These domains need a diversity of tools, from the environments where exercises are solved, to automatic evaluators providing feedback on the attempts of students, not forgetting the authoring, management and sequencing of exercises. This paper presents and analyzes the use of Ensemble for managing the teaching-learning process in an introductory programming course at ESEIG - a school of the Polytechnic of Porto. An experiment was conducted to validate a set of hypotheses regarding the expected gains: increase in number of solved exercises, increase class attendance, improve final grades. They support the conclusion that the use of this e-learning framework for the practice-based learning has a positive impact on the acquisition of complex skills, such as computer programming. © Springer International Publishing AG, part of Springer Nature 2018.

2018

Kaang: A RESTful API Generator for the Modern Web

Authors
Queirós, R;

Publication
7th Symposium on Languages, Applications and Technologies, SLATE 2018, June 21-22, 2018, Guimaraes, Portugal

Abstract
Technology is constantly evolving, as a result, users have become more demanding and the applications more complex. In the realm of Web development, JavaScript is growing in a surprising way, already leaving the boundaries of the browser, mainly due to the advent of Node.js. In fact, JavaScript is constantly being reinvented and, from the ES2015 version, began to include the OO concepts typically found in other programming languages. With Web access being mostly made by mobile devices, developers face now performance challenges and need to perform a plethora of tasks that weren’t necessary a decade ago, such as managing dependencies, bundling files, minifying code, optimizing images and others. Many of these tasks can be achieved by using the right tools for the job. However, developers not only have to know those tools, but they also must know how to access and operate them. This process can be tedious, confusing, time-consuming and error-prone. In this paper, we present Kaang, an automatic generator of RESTFul Web applications. The ultimate goal of Kaang is to minimize the impact of creating a RESTFul service by automating all its workflow (e.g., files structuring, boilerplate code generation, dependencies management, and task building). This kind of generators will benefit two types of users: will help novice developers to decrease their learning curve while facing the new frameworks and libraries commonly found in the modern Web and speed up the work of expert developers avoiding all the repetitive and bureaucratic work. At the same time, Kaang promotes the good development principles by adding automatic testing and documentation generation. For this accomplishment, Kaang generates the main API content based on the user’s input and a set of templates which will help developers to manage and test routes, define resources, store data models and others. In order to provide an addition level of confidence to the generator’s end-users, the generator will be integrated on Travis CI and published on both the npmjs and Yeoman registries. © Ricardo Queirós.

2018

LearnJS - A JavaScript Learning Playground (Short Paper)

Authors
Queirós, R;

Publication
7th Symposium on Languages, Applications and Technologies, SLATE 2018, June 21-22, 2018, Guimaraes, Portugal

Abstract
The JavaScript ecosystem is evolving dramatically. Nowadays, the language is no longer confined to the boundaries of the browser and is now running in both sides of the Web stack. At the same time, JavaScript it’s starting to play also an important role in desktop and mobile applications development. These facts are leading companies to massively adopt JavaScript in their Web/mobile projects and schools to augment the language spectrum among their courses curricula. Several platforms appeared in recent years aiming to foster the learning of the JavaScript language. Those platforms are mainly characterized with sophisticated UI which allow users to learn JavaScript in a playful and interactive way. Despite its apparent success, these environments are not suitable to be integrated in existent educational platforms. Beyond these interoperability issues, most of these platforms are rigid not allowing teachers to contribute with new exercises, organize the existent exercises in more suitable and modular activities to be deployed in their courses, neither keep track of student’s progress. This paper presents LearnJS as a simple and flexible platform to teach and learn JavaScript. In this platform, instructors can contribute with new exercises and combine them with expositive resources (e.g videos) to define specific course activities. These activities can be gamified with the injection of dynamic attributes to reward the most successful attempts. Finally, instructors can deploy activities in their educational platforms. On the other hand, learners can solve exercises and receive immediate feedback on their solutions through static and dynamic analyzers. Since we are in the early stages of implementation, the paper focus on the presentation of the LearnJS architecture, their main components and their data and integration models. Nevertheless, a prototype of the platform is available in a GitHub repository. © Ricardo Queirós

2017

6th Symposium on Languages, Applications and Technologies, SLATE 2017, June 26-27, 2017, Vila do Conde, Portugal

Authors
Queirós, R; Pinto, M; Simões, A; Leal, JP; Varanda Pereira, MJ;

Publication
SLATE

Abstract