Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    Pedro Pereira Rodrigues
  • Role

    External Research Collaborator
  • Since

    04th January 2010
Publications

2025

Interventions based on biofeedback systems to improve workers’ psychological well-being, mental health and safety: a systematic literature review (Preprint)

Authors
Ferreira, S; Rodrigues, MA; Mateus, C; Rodrigues, PP; Rocha, NB;

Publication

Abstract
BACKGROUND

In modern, high-speed work settings, the significance of mental health disorders is increasingly acknowledged as a pressing health issue, with potential adverse consequences for organizations, including reduced productivity and increased absenteeism. Over the past few years, various mental health management solutions, such as biofeedback applications, have surfaced as promising avenues to improve employees' mental well-being.

OBJECTIVE

To gain deeper insights into the suitability and effectiveness of employing biofeedback-based mental health interventions in real-world workplace settings, given that most research has predominantly been conducted within controlled laboratory conditions.

METHODS

A systematic review was conducted to identify studies that used biofeedback interventions in workplace settings. The review focused on traditional biofeedback, mindfulness, app-directed interventions, immersive scenarios, and in-depth physiological data presentation.

RESULTS

The review identified nine studies employing biofeedback interventions in the workplace. Breathing techniques showed great promise in decreasing stress and physiological parameters, especially when coupled with visual and/or auditory cues.

CONCLUSIONS

Future research should focus on developing and implementing interventions to improve well-being and mental health in the workplace, with the goal of creating safer and healthier work environments and contributing to the sustainability of organizations.

2024

Achieving rapid and significant results in healthcare services by using the theory of constraints

Authors
Bacelar Silva, GM; Cox, JF III; Rodrigues, P;

Publication
HEALTH SYSTEMS

Abstract
Lack of timeliness and capacity are seen as fundamental problems that jeopardise healthcare delivery systems everywhere. Many believe the shortage of medical providers is causing this timeliness problem. This action research presents how one doctor implemented the theory of constraints (TOC) to improve the throughput (quantity of patients treated) of his ophthalmology imaging practice by 64% in a few weeks with little to no expense. The five focusing steps (5FS) guided the TOC implementation - which included the drum-buffer-rope scheduling and buffer management - and occurred in a matter of days. The implementation provided significant bottom-line results almost immediately. This article explains each step of the 5FS in general terms followed by specific applications to healthcare services, as well as the detailed use in this action research. Although TOC successfully addressed the practice problems, this implementation was not sustained after the TOC champion left the organisation. However, this drawback provided valuable knowledge. The article provides insightful knowledge to help readers implement TOC in their environments to provide immediate and significant results at little to no expense.

2024

A randomized controlled trial to assess the impact of psychoeducation on the quality of life of parents with children with congenital heart defects-Quantitative component

Authors
Rodrigues, MG; Rodrigues, JD; Moreira, JA; Clemente, F; Dias, CC; Azevedo, LF; Rodrigues, PP; Areias, JC; Areias, ME;

Publication
CHILD CARE HEALTH AND DEVELOPMENT

Abstract
PurposeTo develop, implement and assess the results of psychoeducation to improve the QoL of parents with CHD newborns.MethodsParticipants were parents of inpatient newborns with the diagnosis of non-syndromic CHD. We conducted a parallel RCT with an allocation ratio of 1:1 (intervention vs. control), considering the newborns, using mixed methods research. The intervention group received psychoeducation (Parental Psychoeducation in CHD [PPeCHD]) and the usual routines, and the control group received just the regular practices. The allocation concealment was assured. PI was involved in enrolling participants, developing and implementing the intervention, data collection and data analysis. We followed the Consolidated Standards of Reporting Trials (CONSORT) guidelines.ResultsParents of eight newborns were allocated to the intervention group (n = 15 parents) and eight to the control group (n = 13 parents). It was performed as an intention-to-treat (ITT) analysis. In M2 (4 weeks), the intervention group presented better QoL levels in the physical, psychological, and environmental domains of World Health Organization Quality of Life instrument (WHOQOL-Bref). In M3 (16 weeks), scores in physical and psychological domains maintained a statistically significant difference between the groups.ConclusionsThe PPeCHD, the psychoeducational intervention we developed, positively impacted parental QoL. These results support the initial hypothesis. This study is a fundamental milestone in this research field, adding new essential information to the literature.

2024

Hierarchical growth in neural networks structure: Organizing inputs by Order of Hierarchical Complexity (vol 19, e0308115, 2024)

Authors
Leite, S; Mota, B; Silva, AR; Commons, ML; Miller, PM; Rodrigues, PP;

Publication
PLOS ONE

Abstract
Several studies demonstrate that the structure of the brain increases in hierarchical complexity throughout development. We tested if the structure of artificial neural networks also increases in hierarchical complexity while learning a developing task, called the balance beam problem. Previous simulations of this developmental task do not reflect a necessary premise underlying development: a more complex structure can be built out of less complex ones, while ensuring that the more complex structure does not replace the less complex one. In order to address this necessity, we segregated the input set by subsets of increasing Orders of Hierarchical Complexity. This is a complexity measure that has been extensively shown to underlie the complexity behavior and hypothesized to underlie the complexity of the neural structure of the brain. After segregating the input set, minimal neural network models were trained separately for each input subset, and adjacent complexity models were analyzed sequentially to observe whether there was a structural progression. Results show that three different network structural progressions were found, performing with similar accuracy, pointing towards self-organization. Also, more complex structures could be built out of less complex ones without substituting them, successfully addressing catastrophic forgetting and leveraging performance of previous models in the literature. Furthermore, the model structures trained on the two highest complexity subsets performed better than simulations of the balance beam present in the literature. As a major contribution, this work was successful in addressing hierarchical complexity structural growth in neural networks, and is the first that segregates inputs by Order of Hierarchical Complexity. Since this measure can be applied to all domains of data, the present method can be applied to future simulations, systematizing the simulation of developmental and evolutionary structural growth in neural networks.

2024

Unsupervised algorithms to identify potential under-coding of secondary diagnoses in hospitalisations databases in Portugal

Authors
Portela, D; Amaral, R; Rodrigues, PP; Freitas, A; Costa, E; Fonseca, JA; Sousa Pinto, B;

Publication
HEALTH INFORMATION MANAGEMENT JOURNAL

Abstract
Background Quantifying and dealing with lack of consistency in administrative databases (namely, under-coding) requires tracking patients longitudinally without compromising anonymity, which is often a challenging task. Objective This study aimed to (i) assess and compare different hierarchical clustering methods on the identification of individual patients in an administrative database that does not easily allow tracking of episodes from the same patient; (ii) quantify the frequency of potential under-coding; and (iii) identify factors associated with such phenomena. Method We analysed the Portuguese National Hospital Morbidity Dataset, an administrative database registering all hospitalisations occurring in Mainland Portugal between 2011-2015. We applied different approaches of hierarchical clustering methods (either isolated or combined with partitional clustering methods), to identify potential individual patients based on demographic variables and comorbidities. Diagnoses codes were grouped into the Charlson an Elixhauser comorbidity defined groups. The algorithm displaying the best performance was used to quantify potential under-coding. A generalised mixed model (GML) of binomial regression was applied to assess factors associated with such potential under-coding. Results We observed that the hierarchical cluster analysis (HCA) + k-means clustering method with comorbidities grouped according to the Charlson defined groups was the algorithm displaying the best performance (with a Rand Index of 0.99997). We identified potential under-coding in all Charlson comorbidity groups, ranging from 3.5% (overall diabetes) to 27.7% (asthma). Overall, being male, having medical admission, dying during hospitalisation or being admitted at more specific and complex hospitals were associated with increased odds of potential under-coding. Discussion We assessed several approaches to identify individual patients in an administrative database and, subsequently, by applying HCA + k-means algorithm, we tracked coding inconsistency and potentially improved data quality. We reported consistent potential under-coding in all defined groups of comorbidities and potential factors associated with such lack of completeness. Conclusion Our proposed methodological framework could both enhance data quality and act as a reference for other studies relying on databases with similar problems.