Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    Patrícia Ramos
  • Role

    Senior Researcher
  • Since

    01st June 2009
002
Publications

2025

Tax Optimization in the European Union: A Laffer Curve Perspective

Authors
Sentinelo, T; Queiros, M; Oliveira, JM; Ramos, P;

Publication
ECONOMIES

Abstract
This study explores the applicability of the Laffer Curve in the context of the European Union (EU) by analyzing the relationship between taxation and fiscal revenue across personal income tax (PIT), corporate income tax (CIT), and value-added tax (VAT). Utilizing a comprehensive panel data set spanning 1995 to 2022 across all 27 EU member states, the research also integrates the Bird Index to assess fiscal effort and employs advanced econometric techniques, including the Hausman Test and log-quadratic regression models, to capture the non-linear dynamics of the Laffer Curve. The findings reveal that excessively high tax rates, particularly in some larger member states, may lead to revenue losses due to reduced economic activity and tax evasion, highlighting the existence of optimal tax rates that maximize revenue while sustaining economic growth. By estimating threshold tax rates and incorporating the Bird Index, the study provides a nuanced perspective on tax efficiency and fiscal sustainability, offering evidence-based policy recommendations for optimizing tax systems in the European Union to balance revenue generation with economic competitiveness.

2025

Transformer-Based Models for Probabilistic Time Series Forecasting with Explanatory Variables

Authors
Caetano, R; Oliveira, JM; Ramos, P;

Publication
MATHEMATICS

Abstract
Accurate demand forecasting is essential for retail operations as it directly impacts supply chain efficiency, inventory management, and financial performance. However, forecasting retail time series presents significant challenges due to their irregular patterns, hierarchical structures, and strong dependence on external factors such as promotions, pricing strategies, and socio-economic conditions. This study evaluates the effectiveness of Transformer-based architectures, specifically Vanilla Transformer, Informer, Autoformer, ETSformer, NSTransformer, and Reformer, for probabilistic time series forecasting in retail. A key focus is the integration of explanatory variables, such as calendar-related indicators, selling prices, and socio-economic factors, which play a crucial role in capturing demand fluctuations. This study assesses how incorporating these variables enhances forecast accuracy, addressing a research gap in the comprehensive evaluation of explanatory variables within multiple Transformer-based models. Empirical results, based on the M5 dataset, show that incorporating explanatory variables generally improves forecasting performance. Models leveraging these variables achieve up to 12.4% reduction in Normalized Root Mean Squared Error (NRMSE) and 2.9% improvement in Mean Absolute Scaled Error (MASE) compared to models that rely solely on past sales. Furthermore, probabilistic forecasting enhances decision making by quantifying uncertainty, providing more reliable demand predictions for risk management. These findings underscore the effectiveness of Transformer-based models in retail forecasting and emphasize the importance of integrating domain-specific explanatory variables to achieve more accurate, context-aware predictions in dynamic retail environments.

2025

Deep Learning-Driven Integration of Multimodal Data for Material Property Predictions

Authors
Costa, V; Oliveira, JM; Ramos, P;

Publication
COMPUTATION

Abstract
Advancements in deep learning have revolutionized materials discovery by enabling predictive modeling of complex material properties. However, single-modal approaches often fail to capture the intricate interplay of compositional, structural, and morphological characteristics. This study introduces a novel multimodal deep learning framework for enhanced material property prediction, integrating textual (chemical compositions), tabular (structural descriptors), and image-based (2D crystal structure visualizations) modalities. Utilizing the Alexandriadatabase, we construct a comprehensive multimodal dataset of 10,000 materials with symmetry-resolved crystallographic data. Specialized neural architectures, such as FT-Transformer for tabular data, Hugging Face Electra-based model for text, and TIMM-based MetaFormer for images, generate modality-specific embeddings, fused through a hybrid strategy into a unified latent space. The framework predicts seven critical material properties, including electronic (band gap, density of states), thermodynamic (formation energy, energy above hull, total energy), magnetic (magnetic moment per volume), and volumetric (volume per atom) features, many governed by crystallographic symmetry. Experimental results demonstrated that multimodal fusion significantly outperforms unimodal baselines. Notably, the bimodal integration of image and text data showed significant gains, reducing the Mean Absolute Error for band gap by approximately 22.7% and for volume per atom by 22.4% compared to the average unimodal models. This combination also achieved a 28.4% reduction in Root Mean Squared Error for formation energy. The full trimodal model (tabular + images + text) yielded competitive, and in several cases the lowest, error metrics, particularly for band gap, magnetic moment per volume and density of states per atom, confirming the value of integrating all three modalities. This scalable, modular framework advances materials informatics, offering a powerful tool for data-driven materials discovery and design.

2024

Assessment of Cryptocurrencies Integration into the Financial Market by Applying a Dynamic Equicorrelation Model

Authors
Gomes, G; Queirós, M; Ramos, P;

Publication
SCIENTIFIC ANNALS OF ECONOMICS AND BUSINESS

Abstract
This work aims to contribute to a deeper understanding of cryptocurrencies, which have emerged as a unique form within the financial market. While there are numerous cryptocurrencies available, most individuals are only familiar with Bitcoin. This knowledge gap and the lack of literature on the subject motivated the present study to shed light on the key characteristics of cryptocurrencies, along with their advantages and disadvantages. Additionally, we seek to investigate the integration of cryptocurrencies within the financial market by applying a dynamic equicorrelation model. The analysis covers ten cryptocurrencies from June 2(nd), 2016 to May 25(th), 2021. Through the implementation of the dynamic equicorrelation model, we have reached the conclusion that the degree of integration among cryptocurrencies primarily depends on factors such as trading volume, global stock index performance, energy price fluctuations, gold price movements, financial stress index levels, and the index of US implied volatility.

2024

Enhancing Hierarchical Sales Forecasting with Promotional Data: A Comparative Study Using ARIMA and Deep Neural Networks

Authors
Teixeira, M; Oliveira, JM; Ramos, P;

Publication
MACHINE LEARNING AND KNOWLEDGE EXTRACTION

Abstract
Retailers depend on accurate sales forecasts to effectively plan operations and manage supply chains. These forecasts are needed across various levels of aggregation, making hierarchical forecasting methods essential for the retail industry. As competition intensifies, the use of promotions has become a widespread strategy, significantly impacting consumer purchasing behavior. This study seeks to improve forecast accuracy by incorporating promotional data into hierarchical forecasting models. Using a sales dataset from a major Portuguese retailer, base forecasts are generated for different hierarchical levels using ARIMA models and Multi-Layer Perceptron (MLP) neural networks. Reconciliation methods including bottom-up, top-down, and optimal reconciliation with OLS and WLS (struct) estimators are employed. The results show that MLPs outperform ARIMA models for forecast horizons longer than one day. While the addition of regressors enhances ARIMA's accuracy, it does not yield similar improvements for MLP. MLPs present a compelling balance of simplicity and efficiency, outperforming ARIMA in flexibility while offering faster training times and lower computational demands compared to more complex deep learning models, making them highly suitable for practical retail forecasting applications.