Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    Miguel Ângelo Almeida
  • Role

    Research Assistant
  • Since

    03rd February 2023
  • Nationality

    Portugal
  • Centre

    Applied Photonics
  • Contacts

    +351220402301
    miguel.a.almeida@inesctec.pt
Publications

2024

Impact of gaseous interferents on palladium expansion for hydrogen optical sensing: A time stability study

Authors
Almeida, MAS; Almeida, JMMMD; Coelho, LCC;

Publication
OPTICS AND LASER TECHNOLOGY

Abstract
Continuous monitoring of hydrogen (H2) concentration is critical for safer use, which can be done using optical sensors. Palladium (Pd) is the most commonly used transducer material for this monitoring. This material absorbs H2 leading to an isotropic expansion. This process is reversible but is affected by the interaction with interferents, and the lifetime of Pd thin films is a recurring issue. Fiber Bragg Grating (FBG) sensors are used to follow the strain induced by H2 on Pd thin films. In this work, it is studied the stability of Pd-coated FBGs, protected with a thin Polytetrafluoroethylene (PTFE) layer, 10 years after their deposition to assess their viability to be used as H2 sensors for long periods of time. It was found that Pd coatings that were PTFE-protected after deposition had a longer lifetime than unprotected films, with the same sensitivities that they had immediately after their deposition, namely 23 and 10 pm/vol% for the sensors with 150 and 100 nm of Pd, respectively, and a saturation point around 2 kPa. Furthermore, the Pd expansion was analyzed in the presence of H2, nitrogen (N2), carbon dioxide (CO2), methane (CH4) and water vapor (H2O), finding that H2O is the main interferent. Finally, an exhaustive test for 90 h is also done to analyze the long-term stability of Pd films in dry and humid environments, with only the protected sensor maintaining the long-term response. As a result, this study emphasizes the importance of using protective polymeric layers in Pd films to achieve the five-year lifetime required for a real H2 monitoring application.

2022

Embedding Multi-Wall Carbon Nanotubes as Conductive Nanofiller onto Bi2Te3 Thermoelectric Matrix

Authors
Almeida, MAS; Magalhães, JM; Maia, MM; Pires, AL; Pereira, AM;

Publication
U.Porto Journal of Engineering

Abstract
Thermoelectric Generators (TEGs) are devices that have the ability to directly convert heat into electrical power, or vice-versa, and are being envisaged as one off-the-grid power source. Furthermore, carbon-based materials have been used as a conducting filler to improve several properties in thermoelectric materials. The present work studied the influence on the thermoelectric performance of Bi2Te3 bulk materials by incorporating different concentrations of Multi-Walled Carbon Nanotubes (MWCNT). In order to control and understand the influence of MWCNT dispersion in the nanocomposite, two different production methods (manual grinding and ultrasonication) were carried out and compared. It was verified that a larger dispersion leads to a better outcome for thermoelectric performance. The achieved Seebeck coefficient was up to-162 µV K-1 with a Power Factor of 0.50 µW K-2 m-1, for the nanocomposite produced with 11.8 %V of MWCNT. This result demonstrates the ability to increase the thermoelectric performance of Bi2Te3 throughout the addition of MWCNT. © 2022, Universidade do Porto - Faculdade de Engenharia. All rights reserved.