Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    Micael Filipe Simões
  • Cluster

    Power and Energy
  • Role

    Researcher
  • Since

    06th December 2017
005
Publications

2021

Functional Scalability and Replicability Analysis for Smart Grid Functions: The InteGrid Project Approach

Authors
Menci, SP; Bessa, RJ; Herndler, B; Korner, C; Rao, BV; Leimgruber, F; Madureira, AA; Rua, D; Coelho, F; Silva, JV; Andrade, JR; Sampaio, G; Teixeira, H; Simoes, M; Viana, J; Oliveira, L; Castro, D; Krisper, U; Andre, R;

Publication
ENERGIES

Abstract
The evolution of the electrical power sector due to the advances in digitalization, decarbonization and decentralization has led to the increase in challenges within the current distribution network. Therefore, there is an increased need to analyze the impact of the smart grid and its implemented solutions in order to address these challenges at the earliest stage, i.e., during the pilot phase and before large-scale deployment and mass adoption. Therefore, this paper presents the scalability and replicability analysis conducted within the European project InteGrid. Within the project, innovative solutions are proposed and tested in real demonstration sites (Portugal, Slovenia, and Sweden) to enable the DSO as a market facilitator and to assess the impact of the scalability and replicability of these solutions when integrated into the network. The analysis presents a total of three clusters where the impact of several integrated smart tools is analyzed alongside future large scale scenarios. These large scale scenarios envision significant penetration of distributed energy resources, increased network dimensions, large pools of flexibility, and prosumers. The replicability is analyzed through different types of networks, locations (country-wise), or time (daily). In addition, a simple replication path based on a step by step approach is proposed as a guideline to replicate the smart functions associated with each of the clusters.

2020

Predictive Voltage Control: Empowering Domestic Customers With a Key Role in the Active Management of LV Networks

Authors
Simoes, M; Madureira, AG;

Publication
APPLIED SCIENCES-BASEL

Abstract
In order to avoid voltage problems derived from the connection of large amounts of renewable-based generation to the electrical distribution system, new advanced tools need to be developed that are able to exploit the presence of Distributed Energy Resources (DER). This paper describes the approach proposed for a predictive voltage control algorithm to be used in Low Voltage (LV) distribution networks in order to make use of available flexibilities from domestic consumers via their Home Energy Management System (HEMS) and more traditional resources from the Distribution System Operator (DSO), such as transformers with On-Load Tap Changer (OLTC) and storage devices. The proposed algorithm—the Low Voltage Control (LVC)—is detailed in this paper. The algorithm was tested through simulation using a real Portuguese LV network and real consumption and generation data, in order to evaluate its performance in preparation for a field-trial validation in a Portuguese smart grids pilot.

2020

From home energy management system local flexibility to low-voltage predictive grid management

Authors
Lopes, DF; Simões, M; Sampaio, G; Rua, D; Machado, P; Bessa, R; André, R; Moreira, J; Abreu, C; Madureira, A;

Publication
IET Conference Publications

Abstract
This study presents Integrid’s project framework to manage low voltage (LV) electrical networks, aiming to avoid both technical and quality constraints, induced by the ever-increasing amount of flexible resources spread all over the grid. These assets cover a large amount of renewable-based energy generation to electrical vehicles and energy storage units. For this to be possible, new advanced tools were developed to exploit the benefits of the so-called distributed energy resources, while overcoming limitations on the metering and communication infrastructures. Hence, this study describes the approach taken to perform the active management of LV networks, without a perfect level of observability, exploiting the flexibility provided by the distribution system operator’s resources combined with the one offered by private consumers through the home energy management systems. Additionally, some results followed by a brief discussion are presented, enforcing the success of the developed tools. The algorithms within these tools allow to forecast both microgeneration, available flexibility and load profiles, as well as to estimate the network’s state, at different time frames.

2018

Predictive Voltage Control for LV Distribution Grids exploiting Flexibility from Domestic Customers

Authors
Simões M.F.; Costa H.M.; Madureira A.G.;

Publication
IET Conference Publications

Abstract