Details
Name
Mariana Curado MaltaRole
Senior ResearcherSince
24th January 2024
Nationality
PortugalCentre
Human-Centered Computing and Information ScienceContacts
+351222094000
mariana.c.malta@inesctec.pt
2025
Authors
Couto, F; Malta, MC;
Publication
HCI INTERNATIONAL 2024-LATE BREAKING PAPERS, PT I
Abstract
This paper contributes to developing a Method for Creating Persona Templates (MCPT), addressing a significant gap in user-centred design methodologies. Utilising qualitative data collection and analysis techniques, MCPT offers a systematic approach to developing robust and context-oriented persona templates. MCPT was created by applying the Design Science Research (DSR) methodology, and it incorporates multiple iterations for template refinement and validation among project stakeholders; all of the proposed steps of this method were based on theoretical contributions. Furthermore, MCPT was tested and refined within a real-life R&D project focusing on developing a digital platform e-marketplace for short agrifood supply chains in two iteration cycles. MCPT fills a critical void in persona research by providing detailed instructions for each step of template development. By involving the target audience, users, and project stakeholders, MCPT adds rigour to the persona creation process, enhancing the quality and relevance of personae casts. This paper contributes to the body of knowledge by offering an initial proposal of a comprehensive method for creating persona templates within diverse projects and contexts. Further research should explore MCPT's adaptability to different settings and projects, thus refining its effectiveness and extending its utility in user-centred design practices.
2025
Authors
Nandi, S; Malta, MC; Maji, G; Dutta, A;
Publication
KNOWLEDGE AND INFORMATION SYSTEMS
Abstract
Influential nodes are the important nodes that most efficiently control the propagation process throughout the network. Among various structural-based methods, degree centrality, k-shell decomposition, or their combination identify influential nodes with relatively low computational complexity, making them suitable for large-scale network analysis. However, these methods do not necessarily explore nodes' underlying structure and neighboring information, which poses a significant challenge for researchers in developing timely and efficient heuristics considering appropriate network characteristics. In this study, we propose a new method (IC-SNI) to measure the influential capability of the nodes. IC-SNI minimizes the loopholes of the local and global centrality and calculates the topological positional structure by considering the local and global contribution of the neighbors. Exploring the path structural information, we introduce two new measurements (connectivity strength and effective distance) to capture the structural properties among the neighboring nodes. Finally, the influential capability of a node is calculated by aggregating the structural and neighboring information of up to two-hop neighboring nodes. Evaluated on nine benchmark datasets, IC-SNI demonstrates superior performance with the highest average ranking correlation of 0.813 with the SIR simulator and a 34.1% improvement comparing state-of-the-art methods in identifying influential spreaders. The results show that IC-SNI efficiently identifies the influential spreaders in diverse real networks by accurately integrating structural and neighboring information.
2025
Authors
Nandi, S; Malta, MC; Maji, G; Dutta, A;
Publication
JOURNAL OF COMPUTATIONAL SCIENCE
Abstract
Exploring a group of influential spreaders to acquire maximum influence has become an emerging area of research in complex network analysis. The main challenge of this research is to identify the group of important nodes that are scattered broadly, such that the propagation ability of information is maximum to a network. Researchers proposed many centrality-based approaches with certain limitations to identify the influential nodes (spreaders) considering different properties of the networks. To find a group of spreaders, the VoteRank (a voting mechanism) based method produces effective results with low time complexity, wherein each iteration, the node votes for its neighbors by its voting capability, and the node obtaining the maximum vote score is identified as an influential spreader. The major loophole of existing VoteRank methods is measuring the voting capability based on the degree, k-shell index, or contribution of neighbors methods, which does not efficiently identify the spreaders from the diverse regions based on their spreading ability. In this paper, we propose a novel Community-based VoteRank method (CVoteRank) to identify a group of influential spreaders from diverse network regions by which the diffusion process is enhanced. Firstly, we measure every node's spreading ability based on intra- and inter-connectivity structure in a community, which signifies the local and global importance of the node. To identify the seed nodes, we assign the spreading ability to that node's voting capability and iteratively calculate the voting score of anode based on its neighboring voting capability and its spreading ability. Then, the node acquiring the maximum voting score is identified as the influential spreader in each iteration. Finally, to solve the problem of influence overlapping, CVoteRank reduces the voting capability of the neighboring nodes of the identified spreader. The efficiency of CVoteRank is evaluated and compared with the different state-of-the-art methods on twelve real networks. Utilizing the stochastic susceptible-infected-recovered epidemic method, we calculate the infected scale, final infected scale, and the average shortest path length among the identified spreaders. The experimental results show that CVoteRank identifies the most efficient spreaders with the highest spreading ability within a short period and the maximum reachability, and the identified spreaders are situated at diverse portions of the networks.
2025
Authors
Fabio Couto; Mariana Curado Malta; António Lucas Soares;
Publication
IFIP advances in information and communication technology
Abstract
2025
Authors
Couto, F; Curado Malta, M;
Publication
SN Computer Science
Abstract
Digital Transformation Models (DTM) and Digital Maturity Models (DMM) are two artefacts that guide the planning and implementation of Digital Transformation (DT) initiatives. When used in a combined approach, a DTM-DMM pairing could support DT managers and practitioners, as DTs are holistic and complex initiatives with high failure rates. However, no study has yet systematically addressed the compatibility amongst artefacts. This paper, therefore, aims to analyse the compatibility between academic DTMs and DMMs. Based on architectural compatibility and conceptual similarity, we provide a structured and replicable mixed methods approach to assessing artefact compatibility. To achieve this, we start with a systematic literature review to identify existing academic DTMs and DMMs, analyse the models and group them according to their scope. After, we employ quantitative similarity analysis techniques (Term Frequency-Inverse Document Frequency and Bidirectional Encoder Representations from Transformers combined with Cosine Similarity) and perform a qualitative compatibility analysis to establish ground truth. Based on this analysis, we apply the Receiver Operating Characteristic Curve technique to define threshold values for compatibility assessment. The threshold values were used to suggest compatible DTM-DMM pairings, resulting in nine DTM-DMM binomials for Small and Medium-sized Enterprises. The findings support managers and practitioners in selecting DTM-DMM pairs to guide DT initiatives while offering academics a mixed-methods approach based on the similarity analysis field to evaluate artefact compatibility systematically. © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.