Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    Maria Rosário Ribeiro
  • Cluster

    Computer Science
  • Role

    Research Assistant
  • Since

    01st September 2018
Publications

2021

The Entropy Universe

Authors
Ribeiro, M; Henriques, T; Castro, L; Souto, A; Antunes, L; Costa Santos, C; Teixeira, A;

Publication
Entropy

Abstract
About 160 years ago, the concept of entropy was introduced in thermodynamics by Rudolf Clausius. Since then, it has been continually extended, interpreted, and applied by researchers in many scientific fields, such as general physics, information theory, chaos theory, data mining, and mathematical linguistics. This paper presents The Entropy Universe, which aims to review the many variants of entropies applied to time-series. The purpose is to answer research questions such as: How did each entropy emerge? What is the mathematical definition of each variant of entropy? How are entropies related to each other? What are the most applied scientific fields for each entropy? We describe in-depth the relationship between the most applied entropies in time-series for different scientific fields, establishing bases for researchers to properly choose the variant of entropy most suitable for their data. The number of citations over the past sixteen years of each paper proposing a new entropy was also accessed. The Shannon/differential, the Tsallis, the sample, the permutation, and the approximate entropies were the most cited ones. Based on the ten research areas with the most significant number of records obtained in the Web of Science and Scopus, the areas in which the entropies are more applied are computer science, physics, mathematics, and engineering. The universe of entropies is growing each day, either due to the introducing new variants either due to novel applications. Knowing each entropy’s strengths and of limitations is essential to ensure the proper improvement of this research field.

2020

Nonlinear Methods Most Applied to Heart-Rate Time Series: A Review

Authors
Henriques, T; Ribeiro, M; Teixeira, A; Castro, L; Antunes, L; Costa Santos, C;

Publication
Entropy

Abstract
The heart-rate dynamics are one of the most analyzed physiological interactions. Many mathematical methods were proposed to evaluate heart-rate variability. These methods have been successfully applied in research to expand knowledge concerning the cardiovascular dynamics in healthy as well as in pathological conditions. Notwithstanding, they are still far from clinical practice. In this paper, we aim to review the nonlinear methods most used to assess heart-rate dynamics. We focused on methods based on concepts of chaos, fractality, and complexity: Poincaré plot, recurrence plot analysis, fractal dimension (and the correlation dimension), detrended fluctuation analysis, Hurst exponent, Lyapunov exponent entropies (Shannon, conditional, approximate, sample entropy, and multiscale entropy), and symbolic dynamics. We present the description of the methods along with their most notable applications.