Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

I have received the Licenciatura and PhD degrees in electrical and computer engineering from the Faculty of Engineering of the University of Porto (FEUP), Portugal. I am a researcher at INESC TEC with scientific interests in wireless transceiver architectures, low-power mixed-signal design, CMOS circuits for mobile communication systems, and wireless power transfer.

Interest
Topics
Details

Details

006
Publications

2021

Potential Non-Invasive Technique for Accessing Plant Water Contents Using a Radar System

Authors
Santos, LC; dos Santos, FN; Morais, R; Duarte, C;

Publication
AGRONOMY-BASEL

Abstract
Sap flow measurements of trees are today the most common method to determine evapotranspiration at the tree and the forest/crop canopy level. They provide independent measurements for flux comparisons and model validation. The most common approach to measure the sap flow is based on intrusive solutions with heaters and thermal sensors. This sap flow sensor technology is not very reliable for more than one season crop; it is intrusive and not adequate for low diameter trunk trees. The non-invasive methods comprise mostly Radio-frequency (RF) technologies, typically using satellite or air-born sources. This system can monitor large fields but cannot measure sap levels of a single plant (precision agriculture). This article studies the hypothesis to use of RF signals attenuation principle to detect variations in the quantity of water present in a single plant. This article presents a well-defined experience to measure water content in leaves, by means of high gains RF antennas, spectrometer, and a robotic arm. Moreover, a similar concept is studied with an off-the-shelf radar solution—for the automotive industry—to detect changes in the water presence in a single plant and leaf. The conclusions indicate a novel potential application of this technology to precision agriculture as the experiments data is directly related to the sap flow variations in plant.

2021

Integrated study of triboelectric nanogenerator for ocean wave energy harvesting: Performance assessment in realistic sea conditions

Authors
Rodrigues, C; Ramos, M; Esteves, R; Correia, J; Clemente, D; Goncalves, F; Mathias, N; Gomes, M; Silva, J; Duarte, C; Morais, T; Rosa Santos, P; Taveira Pinto, F; Pereira, A; Ventura, J;

Publication
NANO ENERGY

Abstract
Ocean related activities are often supported by offshore equipment with particular power demands. These are usually deployed at remote locations and have limited space, thus small energy harvesting technologies, such as photovoltaic panels or wind turbines, are used to power their instruments. However, the inherent energy sources are intermittent and have lower density and predictability than an alternative source: wave energy. Here, we propose and critically assess triboelectric nanogenerators (TENGs) as a promising technology for integration into wave buoys. Three TENGs based on rolling-spheres were developed and their performance compared in both a "dry" bench testing system under rotating motions, and in a large-scale wave basin under realistic sea-states installed within a scaled navigation buoy. Both experiments show that the electrical outputs of these TENGs increase with decreasing wave periods and increasing wave amplitudes. However, the wave basin tests clearly demonstrated a significant dependency of the electrical outputs on the pitch degree of freedom and the need to take into account the full dynamics of the buoy, and not only that of TENGs, when subjected to the excitations of waves. This work opens new horizons and strategies to apply TENGs in marine applications, considering realistic hydrodynamic behaviors of floating bodies.

2021

A Switching-Mode Power Recycling System for a Radio-Frequency Outphasing Transmitter

Authors
Saraiva, B; Duarte, C; Tavares, VG;

Publication
2021 XXXVI CONFERENCE ON DESIGN OF CIRCUITS AND INTEGRATED SYSTEMS (DCIS21)

Abstract
This paper reports the development of a power recycling network for a wireless radio-frequency (RF) transmitter combiner. The transmitter makes use of two RF power amplifiers (PAs) in an outphasing architecture, connected at the output by a 180-degree hybrid combiner. In general, to provide isolation between the PAs and prevent nonlinear distortion, an isolation resistor is usually applied at the four-port combiner. However, the main drawback of such approach is the power dissipated at the isolation port, which drastically reduces the overall power efficiency of the outphasing transmitter. In the present work, the isolation port is replaced by an active network that provides the required input impedance for isolation, at the same time it converts the RF signal into dc, feeding it back to the transmitter power supply. Hence, this way, one recycles the power that would be lost in the isolating resistor. The proposed active network comprises a circulator, a resonant rectifier and a dc-dc converter that can be regulated by a maximum power point tracking (MPPT) algorithm. Simulation results for this power recycling system are provided, denoting 61-percent maximum efficiency achieved for an increase of 22-percent peak efficiency for QAM signals with a bandwidth of 250-kHz and carrier frequency equal to 250-MHz when operating at 41-miliwatt output power. © 2021 IEEE.

2020

Analysis and Design of a Polar Digitally Modulated CMOS PA Based on Switched Constant-Current

Authors
Gomes, R; Duarte, C; Pedro, JC;

Publication
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

Abstract
Typical polar digital power amplifiers (DPAs) employ unit-cells operated in class-E or D-1, denoting a switched-resistance operation which degrades linearity. Besides introducing higher demand on digital predistortion (DPD), it also requires extra quantization bits, impacting the overall efficiency and system complexity. To address this, the present work makes use of an optimized constant-current cascode unit-cell which is combined with reduced conduction angle to achieve linear and efficient operation, while minimizing the effort on DPD and/or calibration. A design strategy is developed which focuses on the cascode bias voltage and transistor relative dimensions as design parameters, allowing cascode efficiency optimization without compromising linearity or reliability. A single-ended polar switched constant-current DPA is implemented in 180-nm standard CMOS. Continuous-wave measurements performed at 800 MHz demonstrate an output power of 24 dBm with a PAE of 47%. The DPA dynamic behavior was tested with a 64-QAM signal with 10 MS/s, achieving an average PAE of 20.9% with a peak-to-average power ratio (PAPR) of 8.7 dB and adjacent-channel leakage ratio (ACLR) = 40.34 dB. These results demonstrate comparable performance with the prior art while using only 6-bits clocked at 100 MHz baseband sampling frequency.

2020

Yield Analysis for Electrical Circuit Designs: Many Problems and Some Recent Developments in Electronic Engineering

Authors
Weber, S; Duarte, C;

Publication
IEEE Solid-State Circuits Magazine

Abstract
A high production yield, Y = 1 - pfail, and thus a low failure rate, pfail, is a key requirement for successful chip design and the design of many other technical products and systems. We focus on IC design in the analog and mixedsignal domains, where Monte Carlo (MC) techniques have been a standard method for many years (see "Important Monte Carlo Rules Engineers Should Know"). Circuits have to be reliable under certain ranges of environmental parameters, such as supply voltage (V) and temperature (T). Furthermore, the set of semiconductor technology parameters (P) varies significantly, from die to die (global variations) to device to device (local variations, called mismatch). Many circuit tricks are known to minimize all of these influences (for example, using cascodes for a high power-supply rejection, differential pairs to cancel out threshold voltages, special layout techniques, and so on), but at some point problems become hard to anticipate, and further improvements are difficult to achieve. We must accept such variations and need to analyze their impact on production yield, which is a function of these parameters and the specifications (such as design topology and component sizes, among others). © 2009-2012 IEEE.

Supervised
thesis

2021

Ultra-Low-Power CMOS Oscillator

Author
Pedro Miguel Silva Machado

Institution
UP-FEUP

2021

Biomechanical Energy-Harvesting based on triboelectric nanomaterials as a portable power source for electronics

Author
Tiago Marques da Costa Alves

Institution
UP-FEUP

2021

CMOS Design for Indoor Photovoltaic Harvesting

Author
Ana Luísa Cardoso Macedo

Institution
UP-FEUP

2021

Reciclagem de potência para um transmissor RF sem fios

Author
Bruno Miguel Gonçalves Saraiva

Institution
UP-FEUP

2020

Ultra-Low-Power CMOS Oscillators

Author
Renato Alexandre da Silva Ferreira

Institution
UP-FEUP