Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    Leonardo Machado Ferreira
  • Role

    External Research Collaborator
  • Since

    18th November 2024
Publications

2025

SHAPing Latent Spaces in Facial Attribute Classification Models

Authors
Ferreira, Leonardo; Gonçalves, Tiago; Neto, Pedro C.; Sequeira, Ana; Mamede, Rafael; Oliveira, Mafalda;

Publication

Abstract
This study investigates the use of SHAP (SHapley Additive exPlanations) values as an explainable artificial intelligence (xAI) technique applied on a facial attribute classification task. We analyse the consistency of SHAP value distributions across diverse classifier architectures that share the same feature extractor, revealing that key features driving attribute classification remain stable regardless of classifier architecture. Our findings highlight the challenges in interpreting SHAP values at the individual sample level, as their reliability depends on the model’s ability to learn distinct class-specific features; models exploiting inter-class correlations yield less representative SHAP explanations. Furthermore, pixel-level SHAP analysis reveals that superior classification accuracy does not necessarily equate to meaningful semantic understanding; notably, despite FaceNet exhibiting lower performance than CLIP, it demonstrated a more nuanced grasp of the underlying class attributes. Finally, we address the computational scalability of SHAP, demonstrating that KernelExplainer becomes infeasible for high-dimensional pixel data, whereas DeepExplainer and GradientExplainer offer more practical alternatives with trade-offs. Our results suggest that SHAP is most effective for small to medium feature sets or tabular data, providing interpretable and computationally manageable explanations.