Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
About

About

I'm graduated in Electrical Engineering from the University of Trás-os-Montes e Alto Douro (UTAD), Portugal in 1991. I have obtained the M.Sc. degree in Power Electronics in 1997 from UTAD and the Ph.D. degree in Electrical Engineering (Harmonic distortion analysis on the LV distribution networks) in 2007 from UTAD. Presently, I'm an Auxiliar Professor in the Department of Electrical Engineering, UTAD and also a INESCTEC researcher in power quality, electrical machines and renewables. My main interest areas are power quality, electrical machines and renewables.

Interest
Topics
Details

Details

  • Name

    José Ribeiro Baptista
  • Cluster

    Power and Energy
  • Role

    Affiliated Researcher
  • Since

    01st October 2012
Publications

2019

A field measurements model for harmonic distortion estimation in low voltage systems

Authors
Baptista, J;

Publication
SEST 2019 - 2nd International Conference on Smart Energy Systems and Technologies

Abstract
Nowadays, the power quality has become not only an important competitive factor for industrial users but also a crucial factor in the energy efficiency of the facilities. Seen paradoxically, the increase we have seen in the energy efficiency of the electrical loads, leads to the intensive use of power electronics resulting in a very high injection of harmonics in the distribution networks, thus causing a lack in the power quality leading a significant voltage waveform deformation. An electrical network containing a high harmonic content is synonymous of a low-level quality of the distributed energy, resulting in an increase of losses and low power factors, decreasing the energy efficiency of the installations. This paper presents a model that allows predicting the harmonic content present in an electrical installation, depending on the type of loads. Hence, it will be possible to know several qualitative parameters such as the voltage and current total harmonic distortion (THD), which will help to predict and size the mitigation measures to improve the power quality and energy efficiency of the facilities. © 2019 IEEE.

2019

Dynamic electricity tariff definition based on market price, consumption and renewable generation patterns

Authors
Ribeiro, C; Pinto, T; Faria, P; Ramos, S; Vale, Z; Baptista, J; Soares, J; Navarro Caceres, M; Corchado, JM;

Publication
Clemson University Power Systems Conference, PSC 2018

Abstract
The increasing use of renewable energy sources and distributed generation brought deep changes in power systems, namely with the operation of competitive electricity markets. With the eminent implementation of micro grids and smart grids, new business models able to cope with the new opportunities are being developed. Virtual Power Players are a new type of player, which allows aggregating a diversity of entities, e.g. generation, storage, electric vehicles, and consumers, to facilitate their participation in the electricity markets and to provide a set of new services promoting generation and consumption efficiency, while improving players' benefits. In order to achieve this objective, it is necessary to define tariff structures that benefit or penalize agents according to their behavior. In this paper a method for determining the tariff structures has been proposed, optimized for different load regimes. Daily dynamic tariff structures were defined and proposed, on an hourly basis, 24 hours day-Ahead from the characterization of the typical load profile, the value of the electricity market price and considering the renewable energy production. © 2018 IEEE.

2018

Data mining for prosumers aggregation considering the self-generation

Authors
Ribeiro, C; Pinto, T; Vale, Z; Baptista, J;

Publication
Advances in Intelligent Systems and Computing

Abstract
Several challenges arrive with electrical power restructuring, liberalized electricity markets emerge, aiming to improve the system’s efficiency while offering new economic solutions. Privatization and liberalization of previously nationally owned systems are examples of the transformations that have been applied. Microgrids and smart grids emerge and new business models able to cope with new opportunities start being developed. New types of players appear, allowing aggregating a diversity of entities, e.g. generation, storage, electric vehicles, and consumers, Virtual Power Players (VPPs) are a new type of player that allows aggregating a diversity of players to facilitate their participation in the electricity markets. A major task of VPPs is the remuneration of generation and services (maintenance, market operation costs and energy reserves), as well as charging energy consumption. The paper proposes a normalization method that supports a clustering methodology for the remuneration and tariffs definition. This model uses a clustering algorithm, applied on normalized load values, the value of the micro production, generated in the bus associated to the same load, was subtracted from the value of the consumption of that load. This calculation is performed in a real smart grid on buses with associated micro production. This allows the creation of sub-groups of data according to their correlations. The clustering process is evaluated so that the number of data sub-groups that brings the most added value for the decision making process is found, according to players characteristics. © Springer International Publishing AG 2018.

2018

Customized normalization clustering methodology for consumers with heterogeneous characteristics

Authors
Ribeiro, C; Pinto, T; Vale, Z; Baptista, J;

Publication
ADCAIJ-ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL

Abstract
The increasing use and development of renewable energy sources and distributed generation, brought several changes to the power system operation. Electricity markets worldwide are complex and dynamic environments with very particular characteristics, resulting from their restructuring and evolution into regional and continental scales, along with the constant changes brought by the increasing necessity for an adequate integration of renewable energy sources. With the eminent implementation of micro grids and smart grids, new business models able to cope with the new opportunities are being developed. Virtual Power Players are a new type of player, which allows aggregating a diversity of entities, e.g. generation, storage, electric vehicles, and consumers, to facilitate their participation in the electricity markets and to provide a set of new services promoting generation and consumption efficiency, while improving players' benefits. This paper proposes a clustering methodology regarding the remuneration and tariff of VPP. It proposes a model to implement fair and strategic remuneration and tariff methodologies, using a clustering algorithm, applied to load values, submitted to different types of normalization process, which creates sub-groups of data according to their correlations. The clustering process is evaluated so that the number of data sub-groups that brings the most added value for the decision making process is found, according to the players characteristics. The proposed clustering methodology has been tested in a real distribution network with 30 bus, including residential and commercial consumers, photovoltaic generation and storage units.

2018

Dynamic electricity tariff definition based on market price, consumption and renewable generation patterns

Authors
Ribeiro, C; Pinto, T; Faria, P; Ramos, S; Vale, Z; Baptista, J; Soares, J; Navarro-Caceres, M; Corchado, JM;

Publication
2018 Clemson University Power Systems Conference (PSC)

Abstract

Supervised
thesis

2017

Actuação Cooperativa de Conversores em Redes Eléctricas Inteligentes

Author
Amaro Miguel Ferreira Antunes

Institution
UTAD

2017

Remuneration and Tariffs in the Context of Virtual Power Players

Author
Ana Catarina Ribeiro

Institution
UTAD

2016

-

Author
Chong liu

Institution
UM

2016

DECISION SUPPORT CONCERNING DEMAND RESPONSE PROGRAMS DESIGN AND USE IN SMART GRIDS

Author
Pedro Nuno da Silva Faria

Institution
UTAD