Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

I'm graduated in Electrical Engineering from the University of Trás-os-Montes e Alto Douro (UTAD), Portugal in 1991. I have obtained the M.Sc. degree in Power Electronics in 1997 from UTAD and the Ph.D. degree in Electrical Engineering (Harmonic distortion analysis on the LV distribution networks) in 2007 from UTAD. Presently, I'm an Auxiliar Professor in the Department of Electrical Engineering, UTAD and also a INESCTEC researcher in power quality, electrical machines and renewables. My main interest areas are power quality, electrical machines and renewables.

Interest
Topics
Details

Details

  • Name

    José Ribeiro Baptista
  • Role

    Senior Researcher
  • Since

    01st October 2012
Publications

2025

Silicon Carbide Converter Design: A Review

Authors
Rasul, A; Teixeira, R; Baptista, J;

Publication
Energies

Abstract
To achieve lower switching losses and higher frequency capabilities in converter design, researchers worldwide have been investigating Silicon carbide (SiC) modules and MOSFETs. In power electronics, wide bandgap devices such as Silicon carbide are essential for creating more efficient, higher-density, and higher-power-rated converters. Devices like SiC and Gallium nitride (GaN) offer numerous advantages in power electronics, particularly by influencing parasitic capacitance and inductance in printed circuit boards (PCBs). A review paper on Silicon carbide converter designs using coupled inductors provides a comprehensive analysis of the advancements in SiC-based power converter technologies. Over the past decade, SiC converter designs have demonstrated both efficiency and reliability, underscoring significant improvements in performance and design methodologies over time. This review paper examines developments in Silicon carbide converter design from 2014 to 2024, with a focus on the research conducted in the past ten years. It highlights the advantages of SiC technology, techniques for constructing converters, and the impact on other components. Additionally, a bibliometric analysis of prior studies has been conducted, with a particular focus on strategies to minimize switching losses, as discussed in the reviewed articles. © 2025 by the authors.

2025

Optimal Rainwater Harvesting System for a Commercial Building: A Case Study Focusing on Water and Energy Efficiency

Authors
Alves, D; Teixeira, R; Baptista, J; Briga-Sá, A; Matos, C;

Publication
SUSTAINABILITY

Abstract
Water stress is a significant issue in many countries, including Portugal, which has seen a 20% reduction in water availability over the last 20 years, with a further 10-25% reduction expected by the end of the century. To address potable water consumption, this study aims to identify the optimal rainwater harvesting (RWH) system for a commercial building under various non-potable water use scenarios. This research involved qualitative and quantitative methods, utilizing the Rippl method for storage reservoir sizing and ETA 0701 version 11 guidelines. Various scenarios of non-potable water use were considered, including their budgets and economic feasibility. The best scenario was determined through cash flow analysis, considering the initial investment (RWH construction), income (water bill savings), and expenses (energy costs from hydraulic pumps), and evaluating the net present value (NPV), payback period (PB), and internal rate of return (IRR). The energy savings obtained were calculated by sizing a hybrid system with an RWH system and a photovoltaic (PV) system to supply the energy needs of each of the proposed scenarios and the water pump, making the system independent of the electricity grid. The results show that the best scenario resulted in energy savings of 92.11% for a 7-month period of regularization. These results also demonstrate the possibility for reducing potable water consumption in non-essential situations supported by renewable energy systems, thus helping to mitigate water stress while simultaneously reducing dependence on the grid.

2024

Optimizing wind farm cable layout considering ditch sharing

Authors
Cerveira, A; de Sousa, A; Pires, EJS; Baptista, J;

Publication
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

Abstract
Wind power is becoming an important source of electrical energy production. In an onshore wind farm (WF), the electrical energy is collected at a substation from different wind turbines through electrical cables deployed over ground ditches. This work considers the WF layout design assuming that the substation location and all wind turbine locations are given, and a set of electrical cable types is available. The WF layout problem, taking into account its lifetime and technical constraints, involves selecting the cables to interconnect all wind turbines to the substation and the supporting ditches to minimize the initial investment cost plus the cost of the electrical energy that is lost on the cables over the lifetime of the WF. It is assumed that each ditch can deploy multiple cables, turning this problem into a more complex variant of previously addressed WF layout problems. This variant turns the problem best fitting to the real case and leads to substantial gains in the total cost of the solutions. The problem is defined as an integer linear programming model, which is then strengthened with different sets of valid inequalities. The models are tested with four WFs with up to 115 wind turbines. The computational experiments show that the optimal solutions can be computed with the proposed models for almost all cases. The largest WF was not solved to optimality, but the final relative gaps are small.

2024

Contextual Rule-Based System for Brightness Energy Management in Buildings

Authors
Ferreira, V; Pinto, T; Baptista, J;

Publication
ELECTRONICS

Abstract
The increase in renewable generation of a distributed nature has brought significant new challenges to power and energy system management and operation. Self-consumption in buildings is widespread, and with it rises the need for novel, adaptive and intelligent building energy management systems. Although there is already extensive research and development work regarding building energy management solutions, the capabilities for adaptation and contextualization of decisions are still limited. Consequently, this paper proposes a novel contextual rule-based system for energy management in buildings, which incorporates a contextual dimension that enables the adaptability of the system according to diverse contextual situations and the presence of multiple users with different preferences. Results of a case study based on real data show that the contextualization of the energy management process can maintain energy costs as low as possible, while respecting user preferences and guaranteeing their comfort.

2024

Allocation of national renewable expansion and sectoral demand reduction targets to municipal level

Authors
Schneider, S; Parada, E; Sengl, D; Baptista, J; Oliveira, PM;

Publication
FRONTIERS IN SUSTAINABLE CITIES

Abstract
Despite the ubiquitous term climate neutral cities, there is a distinct lack of quantifiable and meaningful municipal decarbonization goals in terms of the targeted energy balance and composition that collectively connect to national scenarios. In this paper we present a simple but useful allocation approach to derive municipal targets for energy demand reduction and renewable expansion based on national energy transition strategies in combination with local potential estimators. The allocation uses local and regional potential estimates for demand reduction and the expansion of renewables and differentiates resulting municipal needs of action accordingly. The resulting targets are visualized and opened as a decision support system (DSS) on a web-platform to facilitate the discussion on effort sharing and potential realization in the decarbonization of society. With the proposed framework, different national scenarios, and their implications for municipal needs for action can be compared and their implications made explicit.

Supervised
thesis

2023

Comunidades de energia renovável no âmbito de produção e regime de mercado em Portugal

Author
Maria Inês Ferraz Araújo

Institution
UTAD

2023

Análise e definição de contextos para a gestão energética em edifícios

Author
Vasco Rafael da Costa Ferreira

Institution
UTAD

2022

Avaliação do impacto que as estações de carregamento de veículos elétricos têm na qualidade da energia elétrica

Author
José Augusto Sampaio Costa

Institution
UTAD

2022

Optimização da exploração de redes de distribuição com integração de centrais elétricas virtuais

Author
Joana Moura Pereira Duro

Institution
UTAD

2022

Otimização da exploração de redes de distribuição com integração de centrais elétricas virtuais

Author
Joana Moura Pereira Duro

Institution
UTAD