Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

I am professor of Computer Science at the Informatics Department of University of Minho and researcher at HASLab/ INESC TEC. I am also a member of IFIP WG 2.1 (Algorithmic Languages and Calculi) and of the Formal Methods Europe (FME) Association. I serve on the editorial board of Springer journal Formal Aspects of Computing.
RESEARCH 
My research interests are focussed on formal methods, algebra of programming (program calculation) and functional programming. I've published recently on relation algebra and its application to programming. Currently, I am developing a linear algebra of programming which I want to apply to the verification of complex software systems, including quantum ptogramming.

Interest
Topics
Details

Details

  • Name

    José Nuno Oliveira
  • Cluster

    Computer Science
  • Role

    Research Coordinator
  • Since

    01st November 2011
003
Publications

2022

A tribute to Jose Manuel Valenca

Authors
Oliveira, JN; Pinto, JS; Barbosa, LS; Henriques, PR;

Publication
JOURNAL OF LOGICAL AND ALGEBRAIC METHODS IN PROGRAMMING

Abstract
The present Special Issue of the Journal of Logical and Algebraic Methods in Programming was planned as a tribute to Jose Manuel Esgalhado Valenca on the occasion of his Jubilation. A tribute to a professor, in the deepest sense of the word, a colleague and a friend, but above all to a long and inspiring academic journey that has so profoundly shaped the development of Informatics as a scientific area in Portugal. A scientific area that, as he taught us, needs to be understood broadly: not only as an independent research domain, but also as an educational pillar, a strategy for social and economic development, a foundation for a multifaceted professional career. This preface introduces some steps of such a journey. The Special Issue features a selection of scientific papers written by his collaborators, colleagues and friends, covering the different areas Jose Valenca helped to launch and consolidate in Portugal, namely computational logic, verification and mechanized reasoning, and information security. (c) 2022 Published by Elsevier Inc.

2022

Compiling Quantamorphisms for the IBM Q Experience

Authors
Neri, A; Barbosa, RS; Oliveira, JN;

Publication
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Abstract
Based on the connection between the categorical derivation of classical programs from specifications and a category-theoretic approach to quantum information, this paper contributes to extending the laws of classical program algebra to quantum programming. This aims at building correct-by-construction quantum circuits to be deployed on quantum devices such as those available through the IBM Q Experience. Reversibility is ensured by minimal complements. Such complementation is extended inductively to encompass catamorphisms on lists (vulgo folds), giving rise to the corresponding recursion scheme in reversible computation. The same idea is then applied to the setting of quantum programming, where computation is expressed by unitary transformations. This yields the notion of 'quantamorphism', a structural form of quantum recursion implementing cycles and folds on lists with quantum control flow. By Kleisli correspondence, quantamorphisms can be written as monadic functional programs with quantum parameters. This enables the use of Haskell, a monadic functional programming language, to perform the experimental work. Such calculated quantum programs prepared in Haskell are pushed through Quipper and the Qiskit interface to IBM Q quantum devices. The generated quantum circuits - often quite large - exhibit the predicted behaviour. However, running them on real quantum devices naturally incurs a significant amount of errors. As quantum technology is rapidly evolving, an increase in reliability is likely in the future, allowing for our programs to run more accurately.

2020

Type your matrices for great good: a Haskell library of typed matrices and applications (functional pearl)

Authors
Santos, A; Oliveira, JN;

Publication
Haskell 2020 - Proceedings of the 13th ACM SIGPLAN International Symposium on Haskell, co-located with ICFP 2020

Abstract

2020

Formal Methods. FM 2019 International Workshops

Authors
Sekerinski, E; Moreira, N; Oliveira, JN; Ratiu, D; Guidotti, R; Farrell, M; Luckcuck, M; Marmsoler, D; Campos, J; Astarte, T; Gonnord, L; Cerone, A; Couto, L; Dongol, B; Kutrib, M; Monteiro, P; Delmas, D;

Publication
FM Workshops (1)

Abstract

2020

Formal Methods. FM 2019 International Workshops

Authors
Sekerinski, E; Moreira, N; Oliveira, JN; Ratiu, D; Guidotti, R; Farrell, M; Luckcuck, M; Marmsoler, D; Campos, J; Astarte, T; Gonnord, L; Cerone, A; Couto, L; Dongol, B; Kutrib, M; Monteiro, P; Delmas, D;

Publication
FM Workshops (2)

Abstract

Supervised
thesis

2022

Scalable Detection of Security-Vulnerabilities in Source Code,

Author
Artur Jorge Gomes Queiroz

Institution
UM

2022

Using Machine Learning to Automatically Infer an Approximation of a Physical System

Author
Afonso João Borges Cabral Cerejeira da Silva

Institution
UM

2022

Towards ‘Just Good Enough’ Quantum Programming

Author
Ana Isabel Carvalho Neri

Institution
UM

2022

Verificação e descoberta de modelos probabilísticos no Alloy Analyser.

Author
Pedro Faria Durães da Silva

Institution
UM

2022

Greedy and Dynamic Programming by Calculation

Author
Alexandre Mendonça Pinho

Institution
UM