Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

José Manuel Oliveira holds a Licenciatura in Applied Mathematics to Computer Science in 1992, an MSc in Telecommunications in 1996 and a Ph.D. in Engineering Sciences in 2005, all from the University of Porto.

He is an Assistant Professor at the Faculty of Economics, University of Porto, where he teaches in the Mathematics and Information System Group. He is a researcher at INESC TEC since 1992, where he develops work in the Centre for Telecommunications and Multimedia. His research interests are mainly in Wireless Networks, including radio resource management, self-configuration of networks and systems and communications data analytics.

José has participated in several research projects, including the European projects: FP6 DAIDALOS Phase 2, IST VESPER, IST OPIUM and ACTS SCREEN; the QREN projects: SITMe and Portal Douro; the CMU SELF-PVP project; and the P2020 Marecom project.

Interest
Topics
Details

Details

  • Name

    José Manuel Oliveira
  • Role

    Senior Researcher
  • Since

    01st December 1992
Publications

2023

Forecasting Seasonal Sales with Many Drivers: Shrinkage or Dimensionality Reduction?

Authors
Ramos, P; Oliveira, JM; Kourentzes, N; Fildes, R;

Publication
APPLIED SYSTEM INNOVATION

Abstract
Retailers depend on accurate forecasts of product sales at the Store x SKU level to efficiently manage their inventory. Consequently, there has been increasing interest in identifying more advanced statistical techniques that lead to accuracy improvements. However, the inclusion of multiple drivers affecting demand into commonly used ARIMA and ETS models is not straightforward, particularly when many explanatory variables are available. Moreover, regularization regression models that shrink the model's parameters allow for the inclusion of a lot of relevant information but do not intrinsically handle the dynamics of the demand. These problems have not been addressed by previous studies. Nevertheless, multiple simultaneous effects interacting are common in retailing. To be successful, any approach needs to be automatic, robust and efficiently scaleable. In this study, we design novel approaches to forecast retailer product sales taking into account the main drivers which affect SKU demand at store level. To address the variable selection challenge, the use of dimensionality reduction via principal components analysis (PCA) and shrinkage estimators was investigated. The empirical results, using a case study of supermarket sales in Portugal, show that both PCA and shrinkage are useful and result in gains in forecast accuracy in the order of 10% over benchmarks while offering insights on the impact of promotions. Focusing on the promotional periods, PCA-based models perform strongly, while shrinkage estimators over-shrink. For the non-promotional periods, shrinkage estimators significantly outperform the alternatives.

2023

Investigating the Accuracy of Autoregressive Recurrent Networks Using Hierarchical Aggregation Structure-Based Data Partitioning

Authors
Oliveira, JM; Ramos, P;

Publication
BIG DATA AND COGNITIVE COMPUTING

Abstract
Global models have been developed to tackle the challenge of forecasting sets of series that are related or share similarities, but they have not been developed for heterogeneous datasets. Various methods of partitioning by relatedness have been introduced to enhance the similarities of sets, resulting in improved forecasting accuracy but often at the cost of a reduced sample size, which could be harmful. To shed light on how the relatedness between series impacts the effectiveness of global models in real-world demand-forecasting problems, we perform an extensive empirical study using the M5 competition dataset. We examine cross-learning scenarios driven by the product hierarchy commonly employed in retail planning to allow global models to capture interdependencies across products and regions more effectively. Our findings show that global models outperform state-of-the-art local benchmarks by a considerable margin, indicating that they are not inherently more limited than local models and can handle unrelated time-series data effectively. The accuracy of data-partitioning approaches increases as the sizes of the data pools and the models' complexity decrease. However, there is a trade-off between data availability and data relatedness. Smaller data pools lead to increased similarity among time series, making it easier to capture cross-product and cross-region dependencies, but this comes at the cost of a reduced sample, which may not be beneficial. Finally, it is worth noting that the successful implementation of global models for heterogeneous datasets can significantly impact forecasting practice.

2023

Cross-Learning-Based Sales Forecasting Using Deep Learning via Partial Pooling from Multi-level Data

Authors
Oliveira, JM; Ramos, P;

Publication
Communications in Computer and Information Science

Abstract

2023

Robust Sales forecasting Using Deep Learning with Static and Dynamic Covariates

Authors
Ramos, P; Oliveira, JM;

Publication
APPLIED SYSTEM INNOVATION

Abstract
Retailers must have accurate sales forecasts to efficiently and effectively operate their businesses and remain competitive in the marketplace. Global forecasting models like RNNs can be a powerful tool for forecasting in retail settings, where multiple time series are often interrelated and influenced by a variety of external factors. By including covariates in a forecasting model, we can often better capture the various factors that can influence sales in a retail setting. This can help improve the accuracy of our forecasts and enable better decision making for inventory management, purchasing, and other operational decisions. In this study, we investigate how the accuracy of global forecasting models is affected by the inclusion of different potential demand covariates. To ensure the significance of the study's findings, we used the M5 forecasting competition's openly accessible and well-established dataset. The results obtained from DeepAR models trained on different combinations of features indicate that the inclusion of time-, event-, and ID-related features consistently enhances the forecast accuracy. The optimal performance is attained when all these covariates are employed together, leading to a 1.8% improvement in RMSSE and a 6.5% improvement in MASE compared to the baseline model without features. It is noteworthy that all DeepAR models, both with and without covariates, exhibit a significantly superior forecasting performance in comparison to the seasonal naive benchmark.

2019

Assessing the Performance of Hierarchical Forecasting Methods on the Retail Sector

Authors
Oliveira, JM; Ramos, P;

Publication
ENTROPY

Abstract
Retailers need demand forecasts at different levels of aggregation in order to support a variety of decisions along the supply chain. To ensure aligned decision-making across the hierarchy, it is essential that forecasts at the most disaggregated level add up to forecasts at the aggregate levels above. It is not clear if these aggregate forecasts should be generated independently or by using an hierarchical forecasting method that ensures coherent decision-making at the different levels but does not guarantee, at least, the same accuracy. To give guidelines on this issue, our empirical study investigates the relative performance of independent and reconciled forecasting approaches, using real data from a Portuguese retailer. We consider two alternative forecasting model families for generating the base forecasts; namely, state space models and ARIMA. Appropriate models from both families are chosen for each time-series by minimising the bias-corrected Akaike information criteria. The results show significant improvements in forecast accuracy, providing valuable information to support management decisions. It is clear that reconciled forecasts using the Minimum Trace Shrinkage estimator (MinT-Shrink) generally improve on the accuracy of the ARIMA base forecasts for all levels and for the complete hierarchy, across all forecast horizons. The accuracy gains generally increase with the horizon, varying between 1.7% and 3.7% for the complete hierarchy. It is also evident that the gains in forecast accuracy are more substantial at the higher levels of aggregation, which means that the information about the individual dynamics of the series, which was lost due to aggregation, is brought back again from the lower levels of aggregation to the higher levels by the reconciliation process, substantially improving the forecast accuracy over the base forecasts.

Supervised
thesis

2022

Gamification in mobile ticketing services

Author
Diogo Xambre Gouveia

Institution
UP-FEUP

2022

Multi-Language Detection of Design Pattern Instances

Author
Hugo Miguel Felgueira de Andrade

Institution
UP-FEUP

2019

O processo de decisão de divulgação de publicidade remunerada - um estudo dos influenciadores digitais no Instagram, em Portugal.

Author
Ana Filipa Ribeiro Couto

Institution
UP-FEP

2018

Wi-Fi Long Distance Maritime Communications Data Analytics

Author
José Eduardo da Silva Timóteo de Carvalho

Institution
UP-FEUP

2018

Presença da cultura Geek nos medias Portugueses

Author
Joana Filipa Dias Peniche

Institution
UTAD