Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Nationality

    Portugal
  • Centre

    Applied Photonics
  • Contacts

    +351220402301
    jose.l.santos@inesctec.pt
007
Publications

2021

Experimental investigation of a strain gauge sensor based on Fiber Bragg Grating for diameter measurement

Authors
Cardoso, VHR; Caldas, P; Giraldi, MTR; Frazao, O; de Carvalho, CJR; Costa, JCWA; Santos, JL;

Publication
Optical Fiber Technology

Abstract
A strain gauge sensor based on Fiber Bragg Grating (FBG) for diameter measurement is proposed and experimentally demonstrated. The sensor is easily fabricated inserting the FBG on the strain gauge—it was fabricated using a 3D printer—and fixing the FBG in two points of this structure. The idea is to vary the diameter of the structure. We developed two experimental setups, the first one is used to evaluate the response of the FBG to strain and the second one to assess the possibility of using the structure developed to monitor the desired parameter. The results demonstrated that the structure can be used as a way to monitor the diameter variation in some applications. The sensor presented a sensitivity of 0.5361 nm/mm and a good linear response of 0.9976 using the Strain Gauge with FBG and fused taper. © 2020 Elsevier Inc.

2021

Optical Sensors for Industry 4.0

Authors
Santos, JL;

Publication
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS

Abstract
This work addresses the role of optical sensing within the new emerging paradigm Industry 4.0. It starts with some thoughts about complex systems and their inherent need of enlarged sensorial tools. Then, the principles of optical sensing are presented with identification of the two principal types. After summarizing what is meant by Industry 4.0, it is detailed how optical sensing can contribute to the raise up of this new industrial concept, focusing on vision, physical sensing, chemical sensing, and sensor multiplexing. Emphasis is given in fiber optic sensing and, when feasible, in fiber Bragg grating sensing technology. Finally, some final remarks are delivered.

2019

Bi-core optical fiber for sensing o temperature, strain and torsion

Authors
Lobo Ribeiro, ABL; Silva, SFO; Frazao, O; Santos, JL;

Publication
MEASUREMENT SCIENCE AND TECHNOLOGY

Abstract
Bi-core optical fiber structures are studied for applications in sensing. In this paper, an analysis is performed on the spectral characteristics of light propagating in these fibers with central launching core illumination from a standard single mode fiber. Reflective and transmissive configurations are addressed. The characteristics of a reflective bi-core fiber structure for measurement of strain, temperature and absolute value of torsion are investigated and highlights for further research are presented.

2019

Functional metamaterials for optical sensing of hydrogen

Authors
Guerreiro, A; Apolinario, A; Lopes, A; Hierro Rodriguez, A; Aguilar, G; Baptista, JM; Silva, NA; Frazao, O; Quiterio, P; Jorge, P; Rodrigues, P; Moraes, SS; Silva, S; Ferreira, TD; Santos, JL; Araujo, JP;

Publication
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
We present the design, fabrication and optical characterization of functional metamaterials for optical sensing of Hydrogen based on inexpensive self-assembly processes of metallic nanowires integrated in nanoporous alumina templates[37-42]. The optical properties of these materials strongly depend on the environmental concentration or partial pressure of hydrogen and can be used to develop fully optical sensors that reduce the danger of explosion. Optical metamaterials are artificial media, usually combining metallic and dielectric sub-wavelength structures, that exhibit optical properties that cannot be found in naturally occurring materials. Among these, functional metamaterials offer the added possibility of altering or controlling these properties externally after fabrication, in our case by contact with a hydrogen rich atmosphere. This dependency can be used to design[43-45]and develop optical sensors that respond to this gas or to chemical compounds that contain or release hydrogen. In this paper we present some designs for hydrogen functional metamaterials and discuss the main parameters relevant in the optimization of their response. © 2019 SPIE.

2018

Temperature Compensated Strain Sensor Based on Long Period Gratings and Microspheres

Authors
Ascorbe, J; Coelho, L; Santos, JL; Frazao, O; Corres, JM;

Publication
IEEE Photonics Technology Letters

Abstract

Supervised
thesis

2016

Analysis of Plasmonics Based Fiber Optic Sensing Structures

Author
Hamed Moayyed

Institution
UP-FCUP

2016

Research and development of optical fibre sensors based on thin film coating technology

Author
Luís Carlos Costa Coelho

Institution
UP-FCUP

2015

Fiber Sensing Based on New Structures and Post-Processing Enhancement

Author
Marta Sofia dos Anjos Ferreira

Institution
UP-FEP