Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

I am a senior member of the Association for Computing Machinery, an Associate Professor at the Department of Informatics of the University of Minho, and a researcher at HASLab/INESC TEC. I obtained my degree of Docteur de L'Ecole Polytechnique (Paris) in 2001 and my Habilitation from the University of Minho in 2015. In the past I have worked on linear logic and functional programming; more recently my work focused on deductive program verification and model checking of software, which were the subjects of the AVIACC project that I coordinated. I am one of the authors of the textbook "Rigorous Software Development: an Introduction to Program Verification". 

Interest
Topics
Details

Details

  • Name

    Jorge Sousa Pinto
  • Cluster

    Computer Science
  • Role

    Research Coordinator
  • Since

    01st November 2011
Publications

2022

Why3-do: The Way of Harmonious Distributed System Proofs

Authors
Lourenco, CB; Pinto, JS;

Publication
PROGRAMMING LANGUAGES AND SYSTEMS, ESOP 2022

Abstract
We study principles and models for reasoning inductively about properties of distributed systems, based on programmed atomic handlers equipped with contracts. We present the Why3-do library, leveraging a state of the art software verifier for reasoning about distributed systems based on our models. A number of examples involving invariants containing existential and nested quantifiers (including Dijsktra’s self-stabilizing systems) illustrate how the library promotes contract-based modular development, abstraction barriers, and automated proofs.

2022

A tribute to Jose Manuel Valenca

Authors
Oliveira, JN; Pinto, JS; Barbosa, LS; Henriques, PR;

Publication
JOURNAL OF LOGICAL AND ALGEBRAIC METHODS IN PROGRAMMING

Abstract
The present Special Issue of the Journal of Logical and Algebraic Methods in Programming was planned as a tribute to Jose Manuel Esgalhado Valenca on the occasion of his Jubilation. A tribute to a professor, in the deepest sense of the word, a colleague and a friend, but above all to a long and inspiring academic journey that has so profoundly shaped the development of Informatics as a scientific area in Portugal. A scientific area that, as he taught us, needs to be understood broadly: not only as an independent research domain, but also as an educational pillar, a strategy for social and economic development, a foundation for a multifaceted professional career. This preface introduces some steps of such a journey. The Special Issue features a selection of scientific papers written by his collaborators, colleagues and friends, covering the different areas Jose Valenca helped to launch and consolidate in Portugal, namely computational logic, verification and mechanized reasoning, and information security. (c) 2022 Published by Elsevier Inc.

2021

A deductive reasoning approach for database applications using verification conditions

Authors
Alam, MI; Halder, R; Pinto, JS;

Publication
JOURNAL OF SYSTEMS AND SOFTWARE

Abstract
Deductive verification has gained paramount attention from both academia and industry. Although intensive research in this direction covers almost all mainstream languages, the research community has paid little attention to the verification of database applications. This paper proposes a comprehensive set of Verification Conditions (VCs) generation techniques from database programs, adapting Symbolic Execution, Conditional Normal Form, and Weakest Precondition. The validity checking of the generated VCs for a database program determines its correctness w.r.t. the annotated database properties. The developed prototype DBverify based on our theoretical foundation allows us to instantiate VC generation from PL/SQL codes, yielding to detailed performance analysis of the three approaches under different circumstances. With respect to the literature, the proposed approach shows its competence to support crucial SQL features (aggregate functions, nested queries, NULL values, and set operations) and the embedding of SQL codes within a host imperative language. For the chosen set of benchmark PL/SQL codes annotated with relevant properties of interest, our experiment shows that only 38% of procedures are correct, while 62% violate either all or part of the annotated properties. The primary cause for the latter case is mostly due to the acceptance of runtime inputs in SQL statements without proper checking.

2020

Testing for Race Conditions in Distributed Systems via SMT Solving

Authors
Pereira, JC; Machado, N; Pinto, JS;

Publication
Tests and Proofs - 14th International Conference, TAP@STAF 2020, Bergen, Norway, June 22-23, 2020, Proceedings [postponed]

Abstract

2020

Real-time MTL with durations as SMT with applications to schedulability analysis

Authors
de Matos, A; Leucker, M; Pereira, D; Pinto, JS;

Publication
2020 INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF SOFTWARE ENGINEERING (TASE 2020)

Abstract
This paper introduces a synthesis procedure for the satisfiability problem of RMTL-integral formulas as SAT solving modulo theories. RMTL-integral is a real-time version of metric temporal logic (MTL) extended by a duration quantifier allowing to measure time durations. For any given formula, a SAT instance modulo the theory of arrays, uninterpreted functions with equality and non-linear real-arithmetic is synthesized and may then be further investigated using appropriate SMT solvers. We show the benefits of using RMTL-integral with the given SMT encoding on a diversified set of examples that include in particular its application in the area of schedulability analysis. Therefore, we introduce a simple language for formalizing schedulability problems and show how to formulate timing constraints as RMTL-integral formulas. Our practical evaluation based on our synthesis and Z3 as back-end SMT solver also shows the feasibility of the overall approach.

Supervised
thesis

2022

Vulnerabilities preservation using code mutation

Author
Jorge Fernando Alves da Cruz

Institution
UM

2022

Formalization of Deep Learning Techniques with the Why3 Proof Platform

Author
Márcio Alexandre Mota Sousa

Institution
UM

2022

Sistema de pagamentos descentralizado para e-commerce na Blockchain

Author
Ricardo Oliveira Vaz

Institution
UM

2022

Conversão para Why3 de Formalizações em Coq

Author
Bárbara Andreia Cardoso Ferreira

Institution
UM

2022

Verificação de Sistemas Distribuídos com Why3

Author
António Manuel Carvalho Gonçalves

Institution
UM