Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

João P. Vilela is a professor at the Department of Computer Science of the University of Porto and a senior researcher at INESC TEC and CISUC. He was previously a professor at the Department of Informatics Engineering of the University of Coimbra, after receiving the Ph.D. in Computer Science in 2011 from the University of Porto, Portugal. He was a visiting researcher at Georgia Tech, working on physical-layer security, and at MIT, working on security for network coding. In recent years, Dr. Vilela has been coordinator and team member of several national, bilateral, and European-funded projects in security and privacy. His main research interests are in security and privacy of computer and communication systems, with applications such as wireless networks, Internet of Things and mobile devices. Specific research topics include wireless physical-layer security, security of next-generation networks, privacy-preserving data mining, location privacy and automated privacy protection. https://www.dcc.fc.up.pt/~joaovilela/

Interest
Topics
Details

Details

001
Publications

2023

Poster: Privacy-Preserving Joint Communication and Sensing

Authors
Martins, O; Vilela, JP; Gomes, M;

Publication
2023 IEEE 24TH INTERNATIONAL SYMPOSIUM ON A WORLD OF WIRELESS, MOBILE AND MULTIMEDIA NETWORKS, WOWMOM

Abstract
With the recent advancements in wireless networks, Joint Communication and Sensing (JCAS) has become a growing field that is expected to be included in next-generation standards. However, not only is the current performance of the sensing ability still lacking to be used in real-world scenarios, proper security of such privacy-invasive technology has not been fully explored. To this end, we propose the creation of a more robust framework, capable of cross-domain detection and long-term analysis for improved detection, which will also serve as the basis for a security and privacy analysis of the threat landscape and solutions in this field.

2022

Blockchain-based Device Identity Management with Consensus Authentication for IoT Devices

Authors
Mukhandi M.; Damiao F.; Granjal J.; Vilela J.P.;

Publication
Proceedings - IEEE Consumer Communications and Networking Conference, CCNC

Abstract
To decrease the IoT attack surface and provide protection against security threats such as introduction of fake IoT nodes and identity theft, IoT requires scalable device identity and authentication management. This work proposes a blockchain-based identity management approach with consensus authentication as a scalable solution for IoT device authentication management. The proposed approach relies on having a blockchain secure tamper proof ledger and a novel lightweight consensus-based identity authentication. The results show that the proposed decentralised authentication system is scalable as we increase number of nodes.

2022

Effect of User Expectation on Mobile App Privacy: A Field Study

Authors
Mendes, R; Brandao, A; Vilela, JP; Beresford, AR;

Publication
2022 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS (PERCOM)

Abstract
Runtime permission managers for mobile devices allow requests to be performed at the time in which permissions are required, thus enabling the user to grant/deny requests in context according to their expectations. However, in order to avoid cognitive overload, second and subsequent requests are usually automatically granted without user intervention/awareness. This paper explores whether these automated decisions fit user expectations. We performed a field study with 93 participants to collect their privacy decisions, the surrounding context and whether each request was expected. The collected 65261 permission decisions revealed a strong misalignment between apps' practices and expectation as almost half of requests are unexpected by users. This ratio strongly varies with the requested permission, the category and visibility of the requesting application and the user itself; that is, expectation is subjective to each individual. Moreover, privacy decisions are most strongly correlated with user expectation, but such correlation is also highly personal. Finally, Android's default permission manager would have violated the privacy of our participants 15% of the time.

2022

Prediction of Mobile App Privacy Preferences with User Profiles via Federated Learning

Authors
Brandao, A; Mendes, R; Vilela, JP;

Publication
CODASPY'22: PROCEEDINGS OF THE TWELVETH ACM CONFERENCE ON DATA AND APPLICATION SECURITY AND PRIVACY

Abstract
Permission managers in mobile devices allow users to control permissions requests, by granting of denying application's access to data and sensors. However, existing managers are ineffective at both protecting and warning users of the privacy risks of their permissions' decisions. Recent research proposes privacy protection mechanisms through user profiles to automate privacy decisions, taking personal privacy preferences into consideration. While promising, these proposals usually resort to a centralized server towards training the automation model, thus requiring users to trust this central entity. In this paper we propose a methodology to build privacy profiles and train neural networks for prediction of privacy decisions, while guaranteeing user privacy, even against a centralized server. Specifically, we resort to privacy-preserving clustering techniques towards building the privacy profiles, that is, the server computes the centroids (profiles) without access to the underlying data. Then, using federated learning, the model to predict permission decisions is learnt in a distributed fashion while all data remains locally in the users' devices. Experiments following our methodology show the feasibility of building a personalized and automated permission manager guaranteeing user privacy, while also reaching a performance comparable to the centralized state of the art, with an F1-score of 0.9.

2022

Is FFT Fast Enough for Beyond 5G Communications? A Throughput-Complexity Analysis for OFDM Signals

Authors
Queiroz, S; Vilela, JP; Monteiro, E;

Publication
IEEE ACCESS

Abstract
In this paper, we study the impact of computational complexity on the throughput limits of the fast Fourier transform (FFT) algorithm for orthogonal frequency division multiplexing (OFDM) waveforms. Based on the spectro-computational complexity (SC) analysis, we verify that the complexity of an N-point FFT grows faster than the number of bits in the OFDM symbol. Thus, we show that FFT nullifies the OFDM throughput on N unless the N -point discrete Fourier transform (DFT) problem verifies as Omega(N) , which remains a fascinating open question in theoretical computer science. Also, because FFT demands N to be a power of two 2(i) (i > 0), the spectrum widening leads to an exponential complexity on i , i.e. O (2(i)i) . To overcome these limitations, we consider the alternative frequency-time transform formulation of vector OFDM (V-OFDM), in which an N -point FFT is replaced by N/L (L > 0) smaller L-point FFTs to mitigate the cyclic prefix overhead of OFDM. Building on that, we replace FFT by the straightforward DFT algorithm to release the V-OFDM parameters from growing as powers of two and to benefit from flexible numerology (e.g., L = 3 , N = 156). Besides, by setting L to Theta (1) , the resulting solution can run linearly on N (rather than exponentially on i) while sustaining a non null throughput as N grows.

Supervised
thesis

2022

Privacy-Preserving Mechanisms for Heterogeneous Data Types

Author
Mariana da Cruz Cunha

Institution
UP-FCUP

2021

Privacy-Preserving Mechanisms for Heterogeneous Data Types

Author
Mariana da Cruz Cunha

Institution
UP-FCUP

2021

Prediction of Privacy Preferences with User Profiles: A Federated Learning Approach

Author
André Xavier Ribeiro de Almeida Brandão

Institution
UP-FCUP

2021

Privacy Awareness for Mobile Devices

Author
Miguel António de Kermenguy Serpa Pimentel Ramos

Institution
UP-FCUP

2020

Privacy-Preserving Mechanisms for Heterogeneous Data Types

Author
Mariana da Cruz Cunha

Institution
UP-FCUP