Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

João Pedrosa was born in Figueira da Foz, Portugal, in 1990. He received the M.Sc. degree in biomedical engineering from the University of Porto, Porto, Portugal, in 2013 and the Ph.D. degree in biomedical sciences with KU Leuven, Leuven, Belgium, in 2018 where he focused on the development of a framework for segmentation of the left ventricle in 3D echocardiography. He joined INESC TEC (Porto, Portugal) in 2018 as a postdoctoral researcher and is an invited assistant professor at the Faculty of Engineering of the University of Porto since 2020. His research interests include medical imaging acquisition and processing, machine/deep learning and applied research for improved patient care.

Interest
Topics
Details

Details

  • Name

    João Manuel Pedrosa
  • Role

    Assistant Researcher
  • Since

    05th December 2018
  • Nationality

    Portugal
  • Contacts

    +351222094106
    joao.m.pedrosa@inesctec.pt
007
Publications

2025

<i>MedShapeNet</i> - a large-scale dataset of 3D medical shapes for computer vision

Authors
Li, JN; Zhou, ZW; Yang, JC; Pepe, A; Gsaxner, C; Luijten, G; Qu, CY; Zhang, TZ; Chen, XX; Li, WX; Wodzinski, M; Friedrich, P; Xie, KX; Jin, Y; Ambigapathy, N; Nasca, E; Solak, N; Melito, GM; Vu, VD; Memon, AR; Schlachta, C; De Ribaupierre, S; Patel, R; Eagleson, R; Chen, XJ; Mächler, H; Kirschke, JS; de la Rosa, E; Christ, PF; Li, HB; Ellis, DG; Aizenberg, MR; Gatidis, S; Küstner, T; Shusharina, N; Heller, N; Andrearczyk, V; Depeursinge, A; Hatt, M; Sekuboyina, A; Löffler, MT; Liebl, H; Dorent, R; Vercauteren, T; Shapey, J; Kujawa, A; Cornelissen, S; Langenhuizen, P; Ben Hamadou, A; Rekik, A; Pujades, S; Boyer, E; Bolelli, F; Grana, C; Lumetti, L; Salehi, H; Ma, J; Zhang, Y; Gharleghi, R; Beier, S; Sowmya, A; Garza Villarreal, EA; Balducci, T; Angeles Valdez, D; Souza, R; Rittner, L; Frayne, R; Ji, Y; Ferrari, V; Chatterjee, S; Dubost, F; Schreiber, S; Mattern, H; Speck, O; Haehn, D; John, C; Nürnberger, A; Pedrosa, J; Ferreira, C; Aresta, G; Cunha, A; Campilho, A; Suter, Y; Garcia, J; Lalande, A; Vandenbossche, V; Van Oevelen, A; Duquesne, K; Mekhzoum, H; Vandemeulebroucke, J; Audenaert, E; Krebs, C; van Leeuwen, T; Vereecke, E; Heidemeyer, H; Röhrig, R; Hölzle, F; Badeli, V; Krieger, K; Gunzer, M; Chen, JX; van Meegdenburg, T; Dada, A; Balzer, M; Fragemann, J; Jonske, F; Rempe, M; Malorodov, S; Bahnsen, FH; Seibold, C; Jaus, A; Marinov, Z; Jaeger, PF; Stiefelhagen, R; Santos, AS; Lindo, M; Ferreira, A; Alves, V; Kamp, M; Abourayya, A; Nensa, F; Hörst, F; Brehmer, A; Heine, L; Hanusrichter, Y; Wessling, M; Dudda, M; Podleska, LE; Fink, MA; Keyl, J; Tserpes, K; Kim, MS; Elhabian, S; Lamecker, H; Zukic, D; Paniagua, B; Wachinger, C; Urschler, M; Duong, L; Wasserthal, J; Hoyer, PF; Basu, O; Maal, T; Witjes, MJH; Schiele, G; Chang, TC; Ahmadi, SA; Luo, P; Menze, B; Reyes, M; Deserno, TM; Davatzikos, C; Puladi, B; Fua, P; Yuille, AL; Kleesiek, J; Egger, J;

Publication
BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK

Abstract
Objectives: The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models). However, a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instruments is missing. Methods: We present MedShapeNet to translate data-driven vision algorithms to medical applications and to adapt state-of-the-art vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. We present use cases in classifying brain tumors, skull reconstructions, multi-class anatomy completion, education, and 3D printing. Results: By now, MedShapeNet includes 23 datasets with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. Conclusions: MedShapeNet contains medical shapes from anatomy and surgical instruments and will continue to collect data for benchmarks and applications. The project page is: https://medshapenet.ikim.nrw/.

2025

Anatomically-Guided Inpainting for Local Synthesis of Normal Chest Radiographs

Authors
Pedrosa, J; Pereira, SC; Silva, J; Mendonça, AM; Campilho, A;

Publication
DEEP GENERATIVE MODELS, DGM4MICCAI 2024

Abstract
Chest radiography (CXR) is one of the most used medical imaging modalities. Nevertheless, the interpretation of CXR images is time-consuming and subject to variability. As such, automated systems for pathology detection have been proposed and promising results have been obtained, particularly using deep learning. However, these tools suffer from poor explainability, which represents a major hurdle for their adoption in clinical practice. One proposed explainability method in CXR is through contrastive examples, i.e. by showing an alternative version of the CXR except without the lesion being investigated. While image-level normal/healthy image synthesis has been explored in literature, normal patch synthesis via inpainting has received little attention. In this work, a method to synthesize contrastive examples in CXR based on local synthesis of normal CXR patches is proposed. Based on a contextual attention inpainting network (CAttNet), an anatomically-guided inpainting network (AnaCAttNet) is proposed that leverages anatomical information of the original CXR through segmentation to guide the inpainting for a more realistic reconstruction. A quantitative evaluation of the inpainting is performed, showing that AnaCAttNet outperforms CAttNet (FID of 0.0125 and 0.0132 respectively). Qualitative evaluation by three readers also showed that AnaCAttNet delivers superior reconstruction quality and anatomical realism. In conclusion, the proposed anatomical segmentation module for inpainting is shown to improve inpainting performance.

2025

Development of a Non-Invasive Clinical Machine Learning System for Arterial Pulse Wave Velocity Estimation

Authors
Martinez-Rodrigo, A; Pedrosa, J; Carneiro, D; Cavero-Redondo, I; Saz-Lara, A;

Publication
APPLIED SCIENCES-BASEL

Abstract
Arterial stiffness (AS) is a well-established predictor of cardiovascular events, including myocardial infarction and stroke. One of the most recognized methods for assessing AS is through arterial pulse wave velocity (aPWV), which provides valuable clinical insights into vascular health. However, its measurement typically requires specialized equipment, making it inaccessible in primary healthcare centers and low-resource settings. In this study, we developed and validated different machine learning models to estimate aPWV using common clinical markers routinely collected in standard medical examinations. Thus, we trained five regression models: Linear Regression, Polynomial Regression (PR), Gradient Boosting Regression, Support Vector Regression, and Neural Networks (NNs) on the EVasCu dataset, a cohort of apparently healthy individuals. A 10-fold cross-validation demonstrated that PR and NN achieved the highest predictive performance, effectively capturing nonlinear relationships in the data. External validation on two independent datasets, VascuNET (a healthy population) and ExIC-FEp (a cohort of cardiopathic patients), confirmed the robustness of PR and NN (R- (2)> 0.90) across different vascular conditions. These results indicate that by using easily accessible clinical variables and AI-driven insights, it is possible to develop a cost-effective tool for aPWV estimation, enabling early cardiovascular risk stratification in underserved and rural areas where specialized AS measurement devices are unavailable.

2025

Grad-CAM: The impact of large receptive fields and other caveats

Authors
Santos, R; Pedrosa, J; Mendonça, AM; Campilho, A;

Publication
COMPUTER VISION AND IMAGE UNDERSTANDING

Abstract
The increase in complexity of deep learning models demands explanations that can be obtained with methods like Grad-CAM. This method computes an importance map for the last convolutional layer relative to a specific class, which is then upsampled to match the size of the input. However, this final step assumes that there is a spatial correspondence between the last feature map and the input, which may not be the case. We hypothesize that, for models with large receptive fields, the feature spatial organization is not kept during the forward pass, which may render the explanations devoid of meaning. To test this hypothesis, common architectures were applied to a medical scenario on the public VinDr-CXR dataset, to a subset of ImageNet and to datasets derived from MNIST. The results show a significant dispersion of the spatial information, which goes against the assumption of Grad-CAM, and that explainability maps are affected by this dispersion. Furthermore, we discuss several other caveats regarding Grad-CAM, such as feature map rectification, empty maps and the impact of global average pooling or flatten layers. Altogether, this work addresses some key limitations of Grad-CAM which may go unnoticed for common users, taking one step further in the pursuit for more reliable explainability methods.

2024

STERN: Attention-driven Spatial Transformer Network for abnormality detection in chest X-ray images

Authors
Rocha, J; Pereira, SC; Pedrosa, J; Campilho, A; Mendonça, AM;

Publication
ARTIFICIAL INTELLIGENCE IN MEDICINE

Abstract
Chest X-ray scans are frequently requested to detect the presence of abnormalities, due to their low-cost and non-invasive nature. The interpretation of these images can be automated to prioritize more urgent exams through deep learning models, but the presence of image artifacts, e.g. lettering, often generates a harmful bias in the classifiers and an increase of false positive results. Consequently, healthcare would benefit from a system that selects the thoracic region of interest prior to deciding whether an image is possibly pathologic. The current work tackles this binary classification exercise, in which an image is either normal or abnormal, using an attention-driven and spatially unsupervised Spatial Transformer Network (STERN), that takes advantage of a novel domain-specific loss to better frame the region of interest. Unlike the state of the art, in which this type of networks is usually employed for image alignment, this work proposes a spatial transformer module that is used specifically for attention, as an alternative to the standard object detection models that typically precede the classifier to crop out the region of interest. In sum, the proposed end-to-end architecture dynamically scales and aligns the input images to maximize the classifier's performance, by selecting the thorax with translation and non-isotropic scaling transformations, and thus eliminating artifacts. Additionally, this paper provides an extensive and objective analysis of the selected regions of interest, by proposing a set of mathematical evaluation metrics. The results indicate that the STERN achieves similar results to using YOLO-cropped images, with reduced computational cost and without the need for localization labels. More specifically, the system is able to distinguish abnormal frontal images from the CheXpert dataset, with a mean AUC of 85.67% -a 2.55% improvement vs. the 0.98% improvement achieved by the YOLO-based counterpart in comparison to a standard baseline classifier. At the same time, the STERN approach requires less than 2/3 of the training parameters, while increasing the inference time per batch in less than 2 ms. Code available via GitHub.

Supervised
thesis

2024

Longitudinal Explainability in Chest Radiography Pathology Detection

Author
Raquel Morais Belo

Institution

2024

Early Detection of Glaucoma Using a Smartphone

Author
Filipa Lima

Institution

2024

XAIPrivacy – XAI with differential privacy

Author
Fábio Araújo

Institution

2024

Early Detection of Glaucoma Using a Smartphone

Author
Filipa Lima

Institution

2024

Explainable CXR Pathology Detection and Reporting

Author
Pedro Pereira

Institution