Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu


João Fernandes is a researcher at LIAAD and PhD student at FEUP, currently attending the Doctoral Program in Engineering and Industrial Management. His research interests are Operations Research, Metaheuristics, Predictive Analytics and Machine Learning. He is currently researching Operations Scheduling Problems, tackling Energy-Efficiency in Job Shop Scheduling Problems. João has a MsC in Industrial Engineering and Management (FEUP). He also has two years of professional experience in Data Science, having previously worked at Glintt and NOS Comunicações.



  • Name

    João Chaves Fernandes
  • Cluster

    Computer Science
  • Role

    Research Assistant
  • Since

    01st August 2018


Energy-Efficient Scheduling in Job Shop Manufacturing Systems: A Literature Review

Fernandes, JMRC; Homayouni, SM; Fontes, DBMM;


Energy efficiency has become a major concern for manufacturing companies not only due to environmental concerns and stringent regulations, but also due to large and incremental energy costs. Energy-efficient scheduling can be effective at improving energy efficiency and thus reducing energy consumption and associated costs, as well as pollutant emissions. This work reviews recent literature on energy-efficient scheduling in job shop manufacturing systems, with a particular focus on metaheuristics. We review 172 papers published between 2013 and 2022, by analyzing the shop floor type, the energy efficiency strategy, the objective function(s), the newly added problem feature(s), and the solution approach(es). We also report on the existing data sets and make them available to the research community. The paper is concluded by pointing out potential directions for future research, namely developing integrated scheduling approaches for interconnected problems, fast metaheuristic methods to respond to dynamic scheduling problems, and hybrid metaheuristic and big data methods for cyber-physical production systems.


Mathematical modelling of multi-product ordering in three-echelon supply chain networks

Homayouni, SM; Khayyambashi, A; Fontes, DBMM; Fernandes, JC;

Proceedings of the International Conference on Industrial Engineering and Operations Management

This paper proposes a mixed integer linear programming model for a multi-product ordering in a three-echelon supply chain network, where multiple manufacturers supply multiple warehouses with multiple products, which in turn distribute the products to the multiple retailers involved. The model considers practical production constraints such as production capacity, backorder allowances, and economically-viable minimum order quantities. Numerical computations show that the model can efficiently solve small-sized problem instances. © 2019, IEOM Society International.