Details
Name
Inês Filipa TeixeiraCluster
Networked Intelligent SystemsRole
Research AssistantSince
01st May 2018
Nationality
PortugalCentre
Telecommunications and MultimediaContacts
+351222094000
ines.f.teixeira@inesctec.pt
2023
Authors
Ribeiro, M; Nunes, I; Castro, L; Costa-Santos, C; Henriques, TS;
Publication
FRONTIERS IN PUBLIC HEALTH
Abstract
IntroductionPerinatal asphyxia is one of the most frequent causes of neonatal mortality, affecting approximately four million newborns worldwide each year and causing the death of one million individuals. One of the main reasons for these high incidences is the lack of consensual methods of early diagnosis for this pathology. Estimating risk-appropriate health care for mother and baby is essential for increasing the quality of the health care system. Thus, it is necessary to investigate models that improve the prediction of perinatal asphyxia. Access to the cardiotocographic signals (CTGs) in conjunction with various clinical parameters can be crucial for the development of a successful model. ObjectivesThis exploratory work aims to develop predictive models of perinatal asphyxia based on clinical parameters and fetal heart rate (fHR) indices. MethodsSingle gestations data from a retrospective unicentric study from Centro Hospitalar e Universitario do Porto de Sao Joao (CHUSJ) between 2010 and 2018 was probed. The CTGs were acquired and analyzed by Omniview-SisPorto, estimating several fHR features. The clinical variables were obtained from the electronic clinical records stored by ObsCare. Entropy and compression characterized the complexity of the fHR time series. These variables' contribution to the prediction of asphyxia perinatal was probed by binary logistic regression (BLR) and Naive-Bayes (NB) models. ResultsThe data consisted of 517 cases, with 15 pathological cases. The asphyxia prediction models showed promising results, with an area under the receiver operator characteristic curve (AUC) >70%. In NB approaches, the best models combined clinical and SisPorto features. The best model was the univariate BLR with the variable compression ratio scale 2 (CR2) and an AUC of 94.93% [94.55; 95.31%]. ConclusionBoth BLR and Bayesian models have advantages and disadvantages. The model with the best performance predicting perinatal asphyxia was the univariate BLR with the CR2 variable, demonstrating the importance of non-linear indices in perinatal asphyxia detection. Future studies should explore decision support systems to detect sepsis, including clinical and CTGs features (linear and non-linear).
2022
Authors
Viana, P; Andrade, MT; Carvalho, P; Vilaca, L; Teixeira, IN; Costa, T; Jonker, P;
Publication
JOURNAL OF IMAGING
Abstract
2022
Authors
Pinto, JP; Viana, P; Teixeira, I; Andrade, M;
Publication
PEERJ COMPUTER SCIENCE
Abstract
The subjectiveness of multimedia content description has a strong negative impact on tag-based information retrieval. In our work, we propose enhancing available descriptions by adding semantically related tags. To cope with this objective, we use a word embedding technique based on the Word2Vec neural network parameterized and trained using a new dataset built from online newspapers. A large number of news stories was scraped and pre-processed to build a new dataset. Our target language is Portuguese, one of the most spoken languages worldwide. The results achieved significantly outperform similar existing solutions developed in the scope of different languages, including Portuguese. Contributions include also an online application and API available for external use. Although the presented work has been designed to enhance multimedia content annotation, it can be used in several other application areas. © 2022. Pinto et al. Distributed under Creative Commons CC-BY 4.0
2021
Authors
Almeida, J; Vilaca, L; Teixeira, IN; Viana, P;
Publication
APPLIED SCIENCES-BASEL
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.