Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About
Download Photo HD

About

Henrique M. Salgado graduated in Applied Physics (Optics and Electronics) from the University of Porto in 1985 and received the PhD degree in Electronic Engineering and Computer Systems from University of Wales in 1993. He joined the Department of Electrical Engineering and Computers of the University of Porto in 1999 as an Invited Assistant Professor and in 2003 he became Associate Professor. Since 1995 that he heads the Optical and Electronics Area of INESC TEC, begin responsible for several national and internationally funded (EU) research projects. From 1997-1999 he was Research Fellow at the Department of Electrical and Electronic Engineering of the University College London, UK and previously Research Assistant at the School of Electronic Engineering and Computer Systems, Bangor, UK. He is the author and co-author of numerous international publications in the field of optical fibre communications and microwaves. His current research interests include: radio-over-fiber technology and microwave photonics, digital equalization in coherent optical systems, all-optical networks, modeling of nonlinearities and design of compact multiband antennas. He is a member of the Photonics and Communications societies of the IEEE.

Interest
Topics
Details

Details

021
Publications

2020

Patch antenna-in-package for 5G communications with dual polarization and high isolation

Authors
Santos, H; Pinho, P; Salgado, H;

Publication
Electronics (Switzerland)

Abstract
In this paper, we describe the design of a dual polarized packaged patch antenna for 5G communications with improved isolation and bandwidth for K-band. We introduce a differential feeding technique and a heuristic-based design of a matching network applied to a single layer patch antenna with parasitic elements. This approach resulted in broader bandwidth, reduced layer count, improved isolation and radiation pattern stability. The results were validated through finite element method (FEM) and method of moments (MoM) simulations. A peak gain of 5 dBi, isolation above 40 dB and a radiation efficiency of 60% were obtained. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

2020

Design of an Anechoic Chamber for W-Band and mmWave

Authors
Pinho, P; Santos, H; Salgado, H;

Publication
ELECTRONICS

Abstract
In this paper, we describe the design of an electrically large anechoic chamber for usage on millimetre-wave bands. Ansys Savant sotware was used to perform a simulation of the chamber, using physical optics coupled with uniform theory of diffraction (PO/UTD). Moreover, a method based on an open waveguide probe is described in this paper to obtain the electrical properties of the RF absorbers at millimetre-wave frequencies. Two different source antennas were simulated in this work and the corresponding quiet zones predicted. The largest quiet zone was 30 mm x 30 mm x 50mm, for a chamber size of 1.2 m x 0.6 m x 0.6 m.

2019

Resonant tunneling diode photodetectors for optical communications

Authors
Watson, S; Zhang, WK; Tavares, J; Figueiredo, J; Cantu, H; Wang, J; Wasige, E; Salgado, H; Pessoa, L; Kelly, A;

Publication
Microwave and Optical Technology Letters

Abstract
Optical modulation characteristics of resonant tunneling diode photodetectors (RTD-PD) are investigated. Intensity modulated light excites the RTD-PDs to conduct data experiments. Simple and complex data patterns are used with results showing data rates up to 80 and 200 Mbit/s, respectively. This is the first demonstration of complex modulation using resonant tunneling diodes. © 2019 The Authors. Microwave and Optical Technology Letters published by Wiley Periodicals, Inc.

2019

Optical direct intensity modulation of a 79GHz resonant tunneling diode-photodetector oscillator

Authors
Zhang, WK; Watson, S; Figueiredo, J; Wang, J; Cantu, HI; Tavares, J; Pessoa, L; Al Khalidi, A; Salgado, H; Wasige, E; Kelly, AE;

Publication
Optics Express

Abstract

2019

Meander-Line Monopole Antenna With Compact Ground Plane for a Bluetooth System-in-Package

Authors
Santos, HM; Pinho, P; Silva, RP; Pinheiro, M; Salgado, HM;

Publication
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS

Abstract
In this letter, a packaged compact meander-line monopole antenna for Bluetooth communications, manufactured in low-density fan-out technology, is presented. A combined size for the antenna and ground plane of 0.1 lambda(0) x 0.06 lambda(0) x 0.008 lambda(0) is obtained. Such small antennas are usually designed considering their connection to an evaluation board with a large ground plane, which improves their gain and bandwidth, but in this letter, the antenna is designed so it can work standalone without any further connection to printed circuit boards. The challenge of designing such a compact antenna is surpassed by performing a detailed modeling of the radiating meander-line element altogether with its finite ground plane, a tuning inductor, and an inductive coupling feed. The antenna model is developed in Ansys HFSS using the finite element method, which is later validated experimentally. Measurements of the return loss radiation pattern are carried out, and final results show a -6 dB bandwidth of approximately 110 MHz and a gain of -8.7 dBi, at 2.42 GHz.

Supervised
thesis

2019

Laser diode pulse driver

Author
Francisco João Cunha Dias

Institution
UP-FEUP

2019

Antenna Design for Underwater Applications

Author
Oluyomi Aboderin

Institution
UP-FEUP

2019

Desenho de antena mecanicamente flexível para segmento "2 wheeler" multimedia

Author
Mafalda Pereira Varela

Institution
UP-FEUP

2019

Underwater optical wireless communications

Author
Rafael Magalhães Gomes Kraemer

Institution
UP-FEUP

2019

Antenna Design for Integration into Active Devices Targeting 5G and Beyond

Author
Hugo Miguel Guedes Pereira dos Santos

Institution
UP-FEUP