Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Helena Montenegro obtained a M.Sc. degree in informatics and computing engineering from the Faculty of Engineering of the University of Porto in 2021. She is a Ph.D. student in informatics engineering and a research assistant at INESC TEC, associated with the Visual Computing and Machine Intelligence Group (VCMI). Her main research interests include Machine Learning and Computer Vision, with a special focus on privacy-preserving methods for visual data and interpretability.

Interest
Topics
Details

Details

  • Name

    Helena Montenegro
  • Role

    Research Assistant
  • Since

    05th November 2020
002
Publications

2025

A Disentangled Approach to Predict the Aesthetic Outcomes of Breast Cancer Treatment

Authors
Montenegro, H; Cardoso, MJ; Cardoso, JS;

Publication
COMPUTER VISION-ECCV 2024 WORKSHOPS, PT IX

Abstract
Breast cancer locoregional treatment can cause significant and long-lasting alterations to a patient's body. As various surgical options may be available to a patient and considering the impact that the aesthetic outcome may have on the patient's self-esteem, it is critical for the patient to be adequately informed of the possible outcomes of each treatment when deciding on the treatment plan. With the purpose of simulating how a patient may look like after treatment, we propose a deep generative model to transfer asymmetries caused by treatment from post-operative breast patients into pre-operative images, taking advantage of the inherent symmetry of breast images. Furthermore, we disentangle asymmetries related with the breast shape from the nipple within the latent space of the network, enabling higher control over the alterations to the breasts. Finally, we show the proposed model's wide applicability in medical imaging, by applying it to generate counterfactual explanations for cardiomegaly and pleural effusion prediction in chest radiographs.

2025

Leveraging Cold Diffusion for the Decomposition of Identically Distributed Superimposed Images

Authors
Montenegro, H; Cardoso, JS;

Publication
IEEE OPEN JOURNAL OF SIGNAL PROCESSING

Abstract
With the growing adoption of Deep Learning for imaging tasks in biometrics and healthcare, it becomes increasingly important to ensure privacy when using and sharing images of people. Several works enable privacy-preserving image sharing by anonymizing the images so that the corresponding individuals are no longer recognizable. Most works average images or their embeddings as an anonymization technique, relying on the assumption that the average operation is irreversible. Recently, cold diffusion models, based on the popular denoising diffusion probabilistic models, have succeeded in reversing deterministic transformations on images. In this work, we leverage cold diffusion to decompose superimposed images, empirically demonstrating that it is possible to obtain two or more identically-distributed images given their average. We propose novel sampling strategies for this task and show their efficacy on three datasets. Our findings highlight the risks of averaging images as an anonymization technique and argue for the use of alternative anonymization strategies.

2025

Anatomically and Clinically Informed Deep Generative Model for Breast Surgery Outcome Prediction

Authors
Santos, J; Montenegro, H; Bonci, E; Cardoso, MJ; Cardoso, JS;

Publication
Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care - Second Deep Breast Workshop, Deep-Breath 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings

Abstract
Breast cancer patients often face difficulties when choosing among diverse surgeries. To aid patients, this paper proposes ACID-GAN (Anatomically and Clinically Informed Deep Generative Adversarial Network), a conditional generative model for predicting post-operative breast cancer outcomes using deep learning. Built on Pix2Pix, the model incorporates clinical metadata, such as surgery type and cancer laterality, by introducing a dedicated encoder for semantic supervision. Further improvements include colour preservation and anatomically informed losses, as well as clinical supervision via segmentation and classification modules. Experiments on a private dataset demonstrate that the model produces realistic, context-aware predictions. The results demonstrate that the model presents a meaningful trade-off between generating precise, anatomically defined results and maintaining patient-specific appearance, such as skin tone and shape. © 2025 Elsevier B.V., All rights reserved.

2025

SiameseOrdinalCLIP: A Language-Guided Siamese Network for the Aesthetic Evaluation of Breast Cancer Locoregional Treatment

Authors
Teixeira, LF; Montenegro, H; Bonci, E; Cardoso, MJ; Cardoso, JS;

Publication
Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care - Second Deep Breast Workshop, Deep-Breath 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings

Abstract
Breast cancer locoregional treatment includes a wide variety of procedures with diverse aesthetic outcomes. The aesthetic assessment of such procedures is typically subjective, hindering the fair comparison between their outcomes, and consequently restricting evidence-based improvements. Most objective evaluation tools were developed for conservative surgery, focusing on asymmetries while ignoring other relevant traits. To overcome these limitations, we propose SiameseOrdinalCLIP, an ordinal classification network based on image-text matching and pairwise ranking optimisation for the aesthetic evaluation of breast cancer treatment. Furthermore, we integrate a concept bottleneck module into the network for increased explainability. Experiments on a private dataset show that the proposed model surpasses the state-of-the-art aesthetic evaluation and ordinal classification networks. © 2025 Elsevier B.V., All rights reserved.

2025

Conditional Generative Adversarial Network for Predicting the Aesthetic Outcomes of Breast Cancer Treatment

Authors
Montenegro, H; Cardoso, MJ; Cardoso, JS;

Publication
2025 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

Abstract