Details
Name
Diana Faria CapelaCluster
Networked Intelligent SystemsRole
ResearcherSince
01st March 2019
Nationality
PortugalCentre
Applied PhotonicsContacts
+351220402301
diana.f.capela@inesctec.pt
2023
Authors
Capela, D; Ferreira, M; Lima, A; Jorge, P; Guimarães, D; Silva, NA;
Publication
Results in Optics
Abstract
Laser-induced breakdown spectroscopy is a spectroscopic technique that allows for fast elemental mapping of heterogeneous samples. Yet, detailed maps need high-resolution sampling grids, which can turn the task into a time-consuming process and can increase sample damage. In this work, we present the implementation of an imaged-based intelligent mesh algorithm that makes use of superpixel segmentation to optimize elemental mapping processes. Our results show that the approach can increase the elemental mapping resolution and decrease acquisition times, fostering opportunities for applications that benefit from minimal sample damage such as heritage analysis, or timely analysis such as industrial applications. © 2022 The Author(s)
2023
Authors
Lopes, T; Rodrigues, P; Cavaco, R; Capela, D; Ferreira, MFS; Guimaraes, D; Jorge, PAS; Silva, NA;
Publication
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY
Abstract
Imaging the spatial distribution of chemical elements at a sample surface is a common application of laserinduced breakdown spectroscopy with vast scientific and technological applications. Yet, typical imaging solutions only explore the creation of two-dimensional maps, which can limit the interpretability of the results and further diagnostics in three-dimensional settings. Within this context, this work explores the combination of spectral imaging techniques and photogrammetry to deploy a versatile solution for the creation of threedimensional spectral imaging models. First, by making use of a numerical algorithm that is able to match features in the spectral image with those of the three-dimensional model, we show how to match the mesh from distinct sensor modalities. Then, we describe a possible visualization workflow, making use of dedicated photogrammetry and visualization software to easily deploy interactive models. Overall, the results demonstrate the versatility of our approach and pave for the development of novel spectral imaging diagnostic strategies that are able to deliver better qualitative analysis and insight in the three-dimensional space.
2022
Authors
Silva N.A.; Capela D.; Ferreira M.; Gonçalves F.; Lima A.; Guimarães D.; Jorge P.A.S.;
Publication
Results in Optics
Abstract
One of the caveats of laser-induced breakdown spectroscopy technique is the performance for quantification purposes, in particular when the matrix of the sample is complex or the problem spans over a wide range of concentrations. These two questions are key issues for geology applications including ore grading in mining operations and typically lead to sub-optimal results. In this work, we present the implementation of a class of clustered regression calibration algorithms, that previously search the sample space looking for similar samples before employing a linear calibration model that is trained for that cluster. For a case study involving lithium quantification in three distinct exploration drills, the obtained results demonstrate that building local models can improve the performance of standard linear models in particular in the lower concentration region. Furthermore, we show that the models generalize well for unseen data of exploration drills on distinct rock veins, which can motivate not only further research on this class of methods but also technological applications for similar mining environments.
2022
Authors
Ferreira, MFS; Capela, D; Silva, NA; Goncalves, F; Lima, A; Guimaraes, D; Jorge, PAS;
Publication
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY
Abstract
Laser-induced breakdown spectroscopy allows fast chemical analysis of light elements without significant sample preparation, turning it into a promising technique for on-site mining operations. Still, the performance for quantification purposes remains its major caveat, obstructing a broader application of the technique. In this work, we present an extensive comparison of the performances of distinct algorithms for quantification of Lithium in a mining prospection stage, using spectra acquired with both a commercial handheld device and a laboratory prototype. Covering both linear and non-linear methodologies, the results show that, when covering a wide range of concentrations typical on a mining operation, non-linear methodologies manage to achieve errors compatible with a semi-quantitative performance, offering performances better than those obtained with linear methods, which are more affected by saturation and matrix effects. The findings enclosed offer support for future applications in the field and may possibly be generalized for other elements of interest in similar mining environments.
2022
Authors
Cavaco, R; Rodrigues, P; Lopes, T; Capela, D; Ferreira, MFS; Jorge, PAS; Silva, NA;
Publication
Journal of Physics: Conference Series
Abstract
Apart from radiation, which constitutes the primary source of information in laser-induced breakdown spectroscopy, the process is accompanied by secondary processes such as shock wave generation and sound emission. In this manuscript, we explore the possibility of relating plasma properties with the sound from the shock waves in multiple materials, from metals to minerals. By analyzing the behavior of shock wave sound from homogeneous reference metallic targets, we investigate the relation between plasma properties and sound signal, demonstrating that distinct materials and plasma characteristics correspond to distinct plasma sound fingerprints. © Published under licence by IOP Publishing Ltd.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.