Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Davide Carneiro is a Coordinator Professor at the School of Management and Technology, of the Polytechnic Institute of Porto. He is also an integrated researcher at INESC TEC . He holds a PhD from a joint Doctoral Programme in Computer Science of three top Portuguese Universities (MAP-i Programme – Minho, Aveiro and Porto). He develops scientific research in the field of Artificial Intelligence, touching topics such as Machine Learning (including distributed and streaming Machine Learning), Meta-Learning and AI Ethics. The application areas of his research include Healthcare and Wellbeing, Online Conflict Resolution and Fraud Detection.

In the past, Davide has coordinated or participated in several national and international funded research projects in these fields. He was the scientific coordinator of the NEURAT project (NORTE-01-0247-FEDER-039900) and is the institutional coordinator of the EU-funded EJUST ODR Scheme project (JUST-2021-EJUSTICE, 101046468). He is also the Principal Investigator of the FCT-funded projects CEDEs (EXPL/CCI- COM/0706/2021) and xAIDMLS (CPCA-IAC/AV/475278/2022). He is also currently participating in the EU-funded FACILITATE-AI and PRIVATEER projects.

He is the author of more than 150 publications in his fields of interest, including one authored book, four edited books, and over one 140 book chapters, journal papers and conference and workshop papers.

He is also the co-founder of AnyBrain, a Portuguese startup in the field of Human Computer Interaction. The company develops software for fatigue detection in office environments (https://performetric.net/), performance assessment in eSports (https://performetric.gg/), and user identification and cheat detection (https://anybrain.gg/).

Interest
Topics
Details

Details

  • Name

    Davide Rua Carneiro
  • Role

    Senior Researcher
  • Since

    01st August 2022
006
Publications

2025

Using Explanations to Estimate the Quality of Computer Vision Models

Authors
Oliveira, F; Carneiro, D; Pereira, J;

Publication
HUMAN-CENTRED TECHNOLOGY MANAGEMENT FOR A SUSTAINABLE FUTURE, VOL 2, IAMOT

Abstract
Explainable AI (xAI) emerged as one of the ways of addressing the interpretability issues of the so-called black-box models. Most of the xAI artifacts proposed so far were designed, as expected, for human users. In this work, we posit that such artifacts can also be used by computer systems. Specifically, we propose a set of metrics derived from LIME explanations, that can eventually be used to ascertain the quality of each output of an underlying image classification model. We validate these metrics against quantitative human feedback, and identify 4 potentially interesting metrics for this purpose. This research is particularly useful in concept drift scenarios, in which models are deployed into production and there is no new labelled data to continuously evaluate them, becoming impossible to know the current performance of the model.

2025

Development of a Non-Invasive Clinical Machine Learning System for Arterial Pulse Wave Velocity Estimation

Authors
Martinez-Rodrigo, A; Pedrosa, J; Carneiro, D; Cavero-Redondo, I; Saz-Lara, A;

Publication
APPLIED SCIENCES-BASEL

Abstract
Arterial stiffness (AS) is a well-established predictor of cardiovascular events, including myocardial infarction and stroke. One of the most recognized methods for assessing AS is through arterial pulse wave velocity (aPWV), which provides valuable clinical insights into vascular health. However, its measurement typically requires specialized equipment, making it inaccessible in primary healthcare centers and low-resource settings. In this study, we developed and validated different machine learning models to estimate aPWV using common clinical markers routinely collected in standard medical examinations. Thus, we trained five regression models: Linear Regression, Polynomial Regression (PR), Gradient Boosting Regression, Support Vector Regression, and Neural Networks (NNs) on the EVasCu dataset, a cohort of apparently healthy individuals. A 10-fold cross-validation demonstrated that PR and NN achieved the highest predictive performance, effectively capturing nonlinear relationships in the data. External validation on two independent datasets, VascuNET (a healthy population) and ExIC-FEp (a cohort of cardiopathic patients), confirmed the robustness of PR and NN (R- (2)> 0.90) across different vascular conditions. These results indicate that by using easily accessible clinical variables and AI-driven insights, it is possible to develop a cost-effective tool for aPWV estimation, enabling early cardiovascular risk stratification in underserved and rural areas where specialized AS measurement devices are unavailable.

2024

Block size, parallelism and predictive performance: finding the sweet spot in distributed learning

Authors
Oliveira, F; Carneiro, D; Guimaraes, M; Oliveira, O; Novais, P;

Publication
INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS

Abstract
As distributed and multi-organization Machine Learning emerges, new challenges must be solved, such as diverse and low-quality data or real-time delivery. In this paper, we use a distributed learning environment to analyze the relationship between block size, parallelism, and predictor quality. Specifically, the goal is to find the optimum block size and the best heuristic to create distributed Ensembles. We evaluated three different heuristics and five block sizes on four publicly available datasets. Results show that using fewer but better base models matches or outperforms a standard Random Forest, and that 32 MB is the best block size.

2024

Supervised and unsupervised techniques in textile quality inspections

Authors
Ferreira, HM; Carneiro, DR; Guimaraes, MA; Oliveira, FV;

Publication
5TH INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, ISM 2023

Abstract
Quality inspection is a critical step in ensuring the quality and efficiency of textile production processes. With the increasing complexity and scale of modern textile manufacturing systems, the need for accurate and efficient quality inspection and defect detection techniques has become paramount. This paper compares supervised and unsupervised Machine Learning techniques for defect detection in the context of industrial textile production, in terms of their respective advantages and disadvantages, and their implementation and computational costs. We explore the use of an autoencoder for the detection of defects in textiles. The goal of this preliminary work is to find out if unsupervised methods can successfully train models with good performance without the need for defect labelled data. (c) 2023 The Authors. Published by Elsevier B.V.

2024

Application of Meta Learning in Quality Assessment of Wearable Electrocardiogram Recordings

Authors
Huerta, A; Martínez-Rodrigo, A; Guimarâes, M; Carneiro, D; Rieta, JJ; Alcaraz, R;

Publication
ADVANCES IN DIGITAL HEALTH AND MEDICAL BIOENGINEERING, VOL 2, EHB-2023

Abstract
The high rates of mortality provoked by cardiovascular disorders (CVDs) have been rated by the OMS in the top among non-communicable diseases, killing about 18 million people annually. It is crucial to detect arrhythmias or cardiovascular events in an early way. For that purpose, novel portable acquisition devices have allowed long-term electrocardiographic (ECG) recording, being the most common way to discover arrhythmias of a random nature such as atrial fibrillation (AF). Nonetheless, the acquisition environment can distort or even destroy the ECG recordings, hindering the proper diagnosis of CVDs. Thus, it is necessary to assess the ECG signal quality in an automatic way. The proposed approach exploits the feature and meta-feature extraction of 5-s ECG segments with the ability of machine learning classifiers to discern between high- and low-quality ECG segments. Three different approaches were tested, reaching values of accuracy close to 83% using the original feature set and improving up to 90% when all the available meta-features were utilized. Moreover, within the high-quality group, the segments belonging to the AF class outperformed around 7% until a rate over 85% when the meta-features set was used. The extraction of meta-features improves the accuracy even when a subset of meta-features is selected from the whole set.