Details
Name
Carlos Manuel SoaresRole
External Research CollaboratorSince
01st January 2008
Nationality
PortugalCentre
Artificial Intelligence and Decision SupportContacts
+351222094398
carlos.m.soares@inesctec.pt
2025
Authors
Cerqueira, V; Moniz, N; Inácio, R; Soares, C;
Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2024, PT II
Abstract
Recent state-of-the-art forecasting methods are trained on collections of time series. These methods, often referred to as global models, can capture common patterns in different time series to improve their generalization performance. However, they require large amounts of data that might not be available. Moreover, global models may fail to capture relevant patterns unique to a particular time series. In these cases, data augmentation can be useful to increase the sample size of time series datasets. The main contribution of this work is a novel method for generating univariate time series synthetic samples. Our approach stems from the insight that the observations concerning a particular time series of interest represent only a small fraction of all observations. In this context, we frame the problem of training a forecasting model as an imbalanced learning task. Oversampling strategies are popular approaches used to handle the imbalance problem in machine learning. We use these techniques to create synthetic time series observations and improve the accuracy of forecasting models. We carried out experiments using 7 different databases that contain a total of 5502 univariate time series. We found that the proposed solution outperforms both a global and a local model, thus providing a better trade-off between these two approaches.
2025
Authors
Teixeira, C; Gomes, I; Cunha, L; Soares, C; van Rijn, JN;
Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2024, PT II
Abstract
As machine learning technologies are increasingly adopted, the demand for responsible AI practices to ensure transparency and accountability grows. To better understand the decision-making processes of machine learning models, GASTeN was developed to generate realistic yet ambiguous synthetic data near a classifier's decision boundary. However, the results were inconsistent, with few images in the low-confidence region and noise. Therefore, we propose a new GASTeN version with a modified architecture and a novel loss function. This new loss function incorporates a multi-objective measure with a Gaussian loss centered on the classifier probability, targeting the decision boundary. Our study found that while the original GASTeN architecture yields the highest Frechet Inception Distance (FID) scores, the updated version achieves lower Average Confusion Distance (ACD) values and consistent performance across low-confidence regions. Both architectures produce realistic and ambiguous images, but the updated one is more reliable, with no instances of GAN mode collapse. Additionally, the introduction of the Gaussian loss enhanced this architecture by allowing for adjustable tolerance in image generation around the decision boundary.
2025
Authors
Inácio, R; Cerqueira, V; Barandas, M; Soares, C;
Publication
ADVANCES IN INTELLIGENT DATA ANALYSIS XXIII, IDA 2025
Abstract
The effectiveness of time series forecasting models can be hampered by conditions in the input space that lead them to underperform. When those are met, negative behaviours, such as higher-than-usual errors or increased uncertainty are shown. Traditionally, stress testing is applied to assess how models respond to adverse, but plausible scenarios, providing insights on how to improve their robustness and reliability. This paper builds upon this technique by contributing with a novel framework called MAST (Meta-learning and data Augmentation for Stress Testing). In particular, MAST is a meta-learning approach that predicts the probability that a given model will perform poorly on a given time series based on a set of statistical features. This way, instead of designing new stress scenarios, this method uses the information provided by instances that led to decreases in forecasting performance. An additional contribution is made, a novel time series data augmentation technique based on oversampling, that improves the information about stress factors in the input space, which elevates the classification capabilities of the method. We conducted experiments using 6 benchmark datasets containing a total of 97.829 time series. The results suggest that MAST is able to identify conditions that lead to large errors effectively.
2025
Authors
Cerqueira, V; Roque, L; Soares, C;
Publication
DISCOVERY SCIENCE, DS 2024, PT I
Abstract
Accurate evaluation of forecasting models is essential for ensuring reliable predictions. Current practices for evaluating and comparing forecasting models focus on summarising performance into a single score, using metrics such as SMAPE. We hypothesize that averaging performance over all samples dilutes relevant information about the relative performance of models. Particularly, conditions in which this relative performance is different than the overall accuracy. We address this limitation by proposing a novel framework for evaluating univariate time series forecasting models from multiple perspectives, such as one-step ahead forecasting versus multi-step ahead forecasting. We show the advantages of this framework by comparing a state-of-the-art deep learning approach with classical forecasting techniques. While classical methods (e.g. ARIMA) are long-standing approaches to forecasting, deep neural networks (e.g. NHITS) have recently shown state-of-the-art forecasting performance in benchmark datasets. We conducted extensive experiments that show NHITS generally performs best, but its superiority varies with forecasting conditions. For instance, concerning the forecasting horizon, NHITS only outperforms classical approaches for multi-step ahead forecasting. Another relevant insight is that, when dealing with anomalies, NHITS is outperformed by methods such as Theta. These findings highlight the importance of evaluating forecasts from multiple dimensions.
2025
Authors
Lopes, F; Soares, C; Cortez, P;
Publication
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT II
Abstract
This research addresses the challenge of generating synthetic data that resembles real-world data while preserving privacy. With privacy laws protecting sensitive information such as healthcare data, accessing sufficient training data becomes difficult, resulting in an increased difficulty in training Machine Learning models and in overall worst models. Recently, there has been an increased interest in the usage of Generative Adversarial Networks (GAN) to generate synthetic data since they enable researchers to generate more data to train their models. GANs, however, may not be suitable for privacy-sensitive data since they have no concern for the privacy of the generated data. We propose modifying the known Conditional Tabular GAN (CTGAN) model by incorporating a privacy-aware loss function, thus resulting in the Private CTGAN (PCTGAN) method. Several experiments were carried out using 10 public domain classification datasets and comparing PCTGAN with CTGAN and the state-of-the-art privacy-preserving model, the Differential Privacy CTGAN (DP-CTGAN). The results demonstrated that PCTGAN enables users to fine-tune the privacy fidelity trade-off by leveraging parameters, as well as that if desired, a higher level of privacy.
Supervised Thesis
2024
Author
Pedro Rodrigo Caetano Strecht Ribeiro
Institution
UP-FEUP
2024
Author
Yassine Baghoussi
Institution
UP-FEUP
2024
Author
Pedro Rodrigo Caetano Strecht Ribeiro
Institution
UP-FEUP
2019
Author
António Maria Aires Pereira Teixeira de Melo
Institution
UP-FEUP
2019
Author
Pedro Manuel Correia de Abreu
Institution
UP-FEUP
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.