Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
Interest
Topics
Details

Details

002
Publications

2018

A Generative Model for the Characterization of Musical Rhythms

Authors
Sioros, G; Davies, MEP; Guedes, C;

Publication
Journal of New Music Research

Abstract

2017

Automatic musical key estimation with adaptive mode bias

Authors
Bernardes, G; Davies, MEP; Guedes, C;

Publication
2017 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2017, New Orleans, LA, USA, March 5-9, 2017

Abstract
In this paper we present the INESC Key Detection (IKD) system which incorporates a novel method for dynamically biasing key mode estimation using the spatial displacement of beat-synchronous Tonal Interval Vectors (TIVs). We evaluate the performance of the IKD system at finding the global key on three annotated audio datasets and using three key-defining profiles. Results demonstrate the effectiveness of the mode bias in favoring either the major or minor mode, thus allowing users to fine tune this variable to improve correct key estimates on style-specific music datasets or to balance predictions across key modes on unknown input sources. © 2017 IEEE.

2017

A Hierarchical Harmonic Mixing Method

Authors
Bernardes, G; Davies, MEP; Guedes, C;

Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
We present a hierarchical harmonic mixing method for assisting users in the process of music mashup creation. Our main contributions are metrics for computing the harmonic compatibility between musical audio tracks at small- and large-scale structural levels, which combine and reassess existing perceptual relatedness (i.e., chroma vector similarity and key affinity) and dissonance-based approaches. Underpinning our harmonic compatibility metrics are harmonic indicators from the perceptually-motivated Tonal Interval Space, which we adapt to describe musical audio. An interactive visualization shows hierarchical harmonic compatibility viewpoints across all tracks in a large musical audio collection. An evaluation of our harmonic mixing method shows our adaption of the Tonal Interval Space robustly describes harmonic attributes of musical instrument sounds irrespective of timbral differences and demonstrates that the harmonic compatibility metrics comply with the principles embodied in Western tonal harmony to a greater extent than previous approaches. © 2018, Springer Nature Switzerland AG.

2016

A multi-level tonal interval space for modelling pitch relatedness and musical consonance

Authors
Bernardes, G; Cocharro, D; Caetano, M; Guedes, C; Davies, MEP;

Publication
JOURNAL OF NEW MUSIC RESEARCH

Abstract
In this paper we present a 12-dimensional tonal space in the context of the Tonnetz, Chew's Spiral Array, and Harte's 6-dimensional Tonal Centroid Space. The proposed Tonal Interval Space is calculated as the weighted Discrete Fourier Transform of normalized 12-element chroma vectors, which we represent as six circles covering the set of all possible pitch intervals in the chroma space. By weighting the contribution of each circle (and hence pitch interval) independently, we can create a space in which angular and Euclidean distances among pitches, chords, and regions concur with music theory principles. Furthermore, the Euclidean distance of pitch configurations from the centre of the space acts as an indicator of consonance.

2016

Conchord: An Application for Generating Musical Harmony by Navigating in the Tonal Interval Space

Authors
Bernardes, G; Cocharro, D; Guedes, C; Davies, MEP;

Publication
Music, Mind, and Embodiment

Abstract
We present Conchord, a system for real-time automatic generation of musical harmony through navigation in a novel 12-dimensional Tonal Interval Space. In this tonal space, angular and Euclidean distances among vectors representing multi-level pitch configurations equate with music theory principles, and vector norms acts as an indicator of consonance. Building upon these attributes, users can intuitively and dynamically define a collection of chords based on their relation to a tonal center (or key) and their consonance level. Furthermore, two algorithmic strategies grounded in principles from function and root-motion harmonic theories allow the generation of chord progressions characteristic of Western tonal music.