Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    Ariel Guerreiro
  • Role

    Area Manager
  • Since

    01st May 2007
  • Nationality

    Portugal
  • Centre

    Applied Photonics
  • Contacts

    +351220402301
    ariel.guerreiro@inesctec.pt
Publications

2025

Topological sensing with plasmons

Authors
Guerreiroa, A;

Publication
29TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS

Abstract
Topological photonics, leveraging concepts from condensed matter physics, offers transformative potential in the design of robust optical systems. This study investigates the integration of topologically protected edge states into plasmonic nanostructures for enhanced optical sensing. We propose a toy model comprising two chains of metallic filaments forming a one-dimensional plasmonic crystal with diatomic-like unit cells, positioned on a waveguide. The system exhibits edge states localized at the boundaries and a central defect, supported by the Su-Schrieffer-Heeger (SSH) model. These edge states, characterized by significant electric field enhancement and topological robustness, are shown to overcome key limitations in traditional plasmonic sensors, including sensitivity to noise and fabrication inconsistencies. Through coupled mode theory, we demonstrate the potential for strong coupling between plasmonic and guided optical modes, offering pathways for improved interferometric sensing schemes. This work highlights the applicability of topological photonics in advancing optical sensors.

2025

A machine learning approach for designing surface plasmon resonance PCF based sensors

Authors
Romeiro, AF; Cavalcante, CM; Silva, AO; Costa, JCWA; Giraldi, MTR; Guerreiro, A; Santos, JL;

Publication
29TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS

Abstract
This study explores the application of machine learning algorithms to optimize the geometry of the plasmonic layer in a surface plasmon resonance photonic crystal fiber sensor. By leveraging the simplicity of linear regression ( LR) alongside the advanced predictive capabilities of the gradient boosted regression (GBR) algorithm, the proposed approach enables accurate prediction and optimization of the plasmonic layer's configuration to achieve a desired spectral response. The integration of LR and GBR with computational simulations yielded impressive results, with an R-2 exceeding 0.97 across all analyzed variables. Moreover, the predictive accuracy demonstrated a remarkably low margin of error, epsilon < 10(-15). This combination of methods provides a robust and efficient pathway for optimizing sensor design, ensuring enhanced performance and reliability in practical applications.

2025

Analysis of a D-Shaped Photonic Crystal Fiber Sensor with Multiple Conducting Layers

Authors
Romeiro, F; Cardoso, P; Miranda, C; Silva, O; Costa, CWA; Giraldi, MR; Santos, L; Baptista, M; Guerreiro, A;

Publication
Journal of Microwaves, Optoelectronics and Electromagnetic Applications

Abstract
In our study, we conducted a thorough analysis of the spectral characteristics of a D-shaped surface plasmon resonance (SPR) photonic crystal fiber (PCF) refractive index sensor, incorporating a full width at half maximum (FWHM) analysis. We explored four distinct plasmonic materials—silver (Ag), gold (Au), Ga-doped zinc oxide (GZO), and an Ag-nanowire metamaterial—to understand their impact on sensor performance. Our investigation encompassed a comprehensive theoretical modeling and analysis, aiming to unravel the intricate relationship between material composition, sensor geometry, and spectral response. By scrutinizing the sensing properties offered by each material, we laid the groundwork for designing multiplasmonic resonance sensors. Our findings provide valuable insights into how different materials can be harnessed to tailor SPR sensing platforms for diverse applications and environmental conditions, fostering the development of advanced and adaptable detection systems. This research not only advances our understanding of the fundamental principles governing SPR sensor performance but also underscores the potential for leveraging varied plasmonic materials to engineer bespoke sensing solutions optimized for specific requirements and performance metrics. © 2025 SBMO/SBMag.

2024

Exploring new phenomena in analogue physical simulations through an optical feedback loop in paraxial light fluids

Authors
Ferreira, TD; Guerreiro, A; Silva, NA;

Publication
NONLINEAR OPTICS AND ITS APPLICATIONS 2024

Abstract
Exploring optical analogues with paraxial fluids of light has been a subject of great interest over the past years. Despite many optical analogues having been created and explored with these systems, they have some limitations that usually hinder the observation of the desired dynamics. Since these systems map the effective time onto the propagation direction, the fixed size of the nonlinear media limits the experimental effective time, and only the output state is accessible. In this work, we present a solution to overcome these problems in the form of an optical feedback loop, which consists of reconstructing the output state, by using the off-axis digital holography technique, and then re-injecting it again at the entrance of the medium through the utilization of Spatial Light Modulators. This technique enables access to intermediate states and an extension of the system effective time. Furthermore, the total control of the amplitude and phase of the beam at the input of the medium, also allows us to explore more exotic configurations that may be interesting in the context of optical analogues, that otherwise would be hard to create. To demonstrate the capabilities of the setup, we explore qualitatively some case studies, such as the dark soliton decay into vortices with the propagation of shock waves, and the collision dynamics between three flat-top states. The results presented in this work pave the way for probing new dynamics with paraxial fluids of light.

2024

Surface Plasmon Resonance Sensor Based on a Planar Waveguide with a Bimetallic Layer

Authors
Rodrigues, HJB; Cardoso, MP; Miranda, CC; Romeiro, AF; Giraldi, MTR; Silva, AO; Costa, JCWA; Santos, JL; Guerreiro, A;

Publication
2024 LATIN AMERICAN WORKSHOP ON OPTICAL FIBER SENSORS, LAWOFS 2024

Abstract
This paper presents the examination of a planar waveguide sensor featuring a bimetallic layer, revealing its potential applicability across both the visible and infrared spectrums. The bimetallic layer consists of adjacent gold and silver slabs positioned atop the waveguide's core. This arrangement demonstrates the activation of two distinct plasmon resonances, indicating promising prospects for multiparameter sensing applications.

Supervised
thesis

2023

Advances in Paraxial Fluids of Light with Photorefractive Media

Author
Tiago David da Silva Ferreira

Institution
UP-FCUP

2022

Optical Analogues: A Stepping Stone into Quantum Simulations and Computation

Author
Tiago David da Silva Ferreira

Institution
UP-FCUP

2022

Optical Extreme Learning Machines: a new trend in optical computing

Author
Duarte José Fernandes da Silva

Institution
UP-FCUP

2022

Towards Realtime Classification of Optically Trapped Particles

Author
Vicente Vieira Rocha

Institution
UP-FCUP

2021

Optical Analogues: A Stepping Stone into Quantum Simulations and Computation

Author
Tiago David da Silva Ferreira

Institution
UP-FCUP