Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

António Pinto has a PhD in Electrical and Computers Engineering from Porto University (2010). Currently, he is an Assistant Professor at Escola Superior de Tecnologia e Gestão (ESTG) of the Polytechnic of Porto, where he gives courses in computer networks, operating systems, network security and digital forensics. He is also a researcher of CRACS at INESC TEC research institute. His current research interests include information security management systems, computer and network security, digital forensics, and data privacy. António Pinto has published 15+ papers and participated in 5+ research projects, including the following European projects: Smart UNattended airborne sensor Network for detection of vessels used for cross border crime and irregular entrY (SUNNY), Media Ecosystem Deployment Through Ubiquitous Content-Aware Network Environments (IST ALICANTE), and End-to-End QoS through Integrated Management of Content, Networks and Terminals (ENTHRONE)

Interest
Topics
Details

Details

  • Name

    António Pinto
  • Cluster

    Computer Science
  • Role

    Senior Researcher
  • Since

    13th January 2005
003
Publications

2023

On the Implementation of a Blockchain-Assisted Academic Council Electronic Vote System

Authors
Alves, J; Pinto, A;

Publication
SMART CITIES

Abstract
The digitisation of administrative tasks and processes is a reality nowadays, translating into added value such as agility in process management, or simplified access to stored data. The digitisation of processes of decision-making in collegiate bodies, such as Academic Councils, is not yet a common reality. Voting acts are still carried out in person, or at most in online meetings, without having a real confirmation of the vote of each element. This is particularly complex to achieve in remote meeting scenarios, where connection breaks or interruptions of audio or video streams may exist. A new digital platform was already previously proposed. It considered decision-making, by voting in Academic Councils, to be supported by a system that guarantees the integrity of the decisions taken, even when meeting online. Our previous work mainly considered the overall design. In this work, we bettered the design and specification of our previous proposal and describe the implemented prototype, and validate and discuss the obtained results.

2023

On the Performance of Secure Sharing of Classified Threat Intelligence between Multiple Entities

Authors
Fernandes, R; Bugla, S; Pinto, P; Pinto, A;

Publication
SENSORS

Abstract
The sharing of cyberthreat information within a community or group of entities is possible due to solutions such as the Malware Information Sharing Platform (MISP). However, the MISP was considered limited if its information was deemed as classified or shared only for a given period of time. A solution using searchable encryption techniques that better control the sharing of information was previously proposed by the same authors. This paper describes a prototype implementation for two key functionalities of the previous solution, considering multiple entities sharing information with each other: the symmetric key generation of a sharing group and the functionality to update a shared index. Moreover, these functionalities are evaluated regarding their performance, and enhancements are proposed to improve the performance of the implementation regarding its execution time. As the main result, the duration of the update process was shortened from around 2922 s to around 302 s, when considering a shared index with 100,000 elements. From the security analysis performed, the implementation can be considered secure, thus confirming the secrecy of the exchanged nonces. The limitations of the current implementation are depicted, and future work is pointed out.

2023

Boosting additive circular economy ecosystems using blockchain: An exploratory case study

Authors
Ferreira, IA; Godina, R; Pinto, A; Pinto, P; Carvalho, H;

Publication
COMPUTERS & INDUSTRIAL ENGINEERING

Abstract
The role of new technologies such as additive manufacturing and blockchain technology in designing and implementing circular economy ecosystems is not a trivial issue. This study aimed to understand if blockchain technology can be an enabler tool for developing additive symbiotic networks. A real case study was developed regarding a circular economy ecosystem in which a fused granular fabrication 3D printer is used to valorize polycarbonate waste. The industrial symbiosis network comprised four stakeholders: a manufacturing company that produces polycarbonate waste, a municipality service responsible for the city waste management, a start-up holding the 3D printer, and a non-profit store. It was identified a set of six requirements to adopt the blockchain technology in an additive symbiotic network, bearing in mind the need to have a database to keep track of the properties of the input material for the 3D printer during the exchanges, in addition to the inexistence of mechanisms of trust or cooperation between well-established industries and the additive manufacturing industry. The findings suggested a permissioned blockchain to support the implementation of the additive symbiotic network, namely, to enable the physical transactions (quantity and quality of waste material PC sheets) and monitoring and reporting (additive manufacturing technology knowledge and final product's quantity and price).Future research venues include developing blockchain-based systems that enhance the development of ad-ditive symbiotic networks.

2022

A Smart Contract Architecture to Enhance the Industrial Symbiosis Process Between the Pulp and Paper Companies - A Case Study

Authors
Goncalves, R; Ferreira, I; Godina, R; Pinto, P; Pinto, A;

Publication
BLOCKCHAIN AND APPLICATIONS

Abstract
Pulp and Paper Companies collaborate to monitor and monetize waste and create value from their by-products. This process of Industrial Symbiosis requires the creation and maintenance of trusted and transparent relationships between all entities participating in these networks, which is a constant challenge. In this context, a blockchain-based system can help in establishing and maintaining these networks, serving as a ground truth between companies operating at a national or a global scale. This paper proposes a scalable and modular blockchain architecture design using smart contracts to enhance the industrial symbiosis process of the Pulp, Paper, and Cardboard Production Sector companies in Portugal. This design comprehends all entities participating in the network. The implementation of this design assumes the use of a permissioned ledger built using Hyperledger Fabric to provide the required trust and transparency between all entities. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2022

A Decentralised Real Estate Transfer Verification Based on Self-Sovereign Identity and Smart Contracts

Authors
Shehu, AS; Pinto, A; Correia, ME;

Publication
SECRYPT : PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

Abstract

Supervised
thesis

2019

Secure Remote Storage of Logs With Search Capabilities

Author
Rui Manuel Vieira Araújo

Institution
IPP-ESTG

2019

Forder application

Author
David Emanuel Torres Mendes

Institution
IPP-ESTG

2019

Sistema de gestão de eventos de segurança de informação em alta disponibilidade

Author
Hélio Celso Pinto de Sousa

Institution
IPP-ESTG

2019

Sistema de Consentimento Informado e Reputação persistido em Blockchain

Author
Hélder Miguel Ribeiro de Sousa

Institution
IPP-ESTG

2015

Admission Control based on End-to-end Delay Estimation to Enhance the Support of Real-Time Traffic in Wireless Sensor Networks

Author
Pedro Filipe Cruz Pinto

Institution
UP-FEUP