Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

I am an Assistant Professor at the Department of Informatics of the University of Minho and a Senior Researcher at HASLab/INESC TEC.

My research interests are in dependable distributed systems, in particular with application to dependable distributed database systems, large scale distributed systems and cloud computing management.


Interest
Topics
Details

Details

  • Name

    António Luís Sousa
  • Role

    Centre Coordinator
  • Since

    01st November 2011
Publications

2024

To FID or not to FID: Applying GANs for MRI Image Generation in HPC

Authors
Cepa, B; Brito, C; Sousa, A;

Publication

Abstract
AbstractWith the rapid growth of Deep Learning models and neural networks, the medical data available for training – which is already significantly less than other types of data – is becoming scarce. For that purpose, Generative Adversarial Networks (GANs) have received increased attention due to their ability to synthesize new realistic images. Our preliminary work shows promising results for brain MRI images; however, there is a need to distribute the workload, which can be supported by High-Performance Computing (HPC) environments. In this paper, we generate 256×256 MRI images of the brain in a distributed setting. We obtained an FIDRadImageNetof 10.67 for the DCGAN and 23.54 for the WGAN-GP, which are consistent with results reported in several works published in this scope. This allows us to conclude that distributing the GAN generation process is a viable option to overcome the computational constraints imposed by these models and, therefore, facilitate the generation of new data for training purposes.

2024

MAC: An Artifact Correction Framework for Brain MRI based on Deep Neural Networks

Authors
Oliveira, A; Cepa, B; Brito, C; Sousa, A;

Publication

Abstract
AbstractThe correction of artifacts in Magnetic Resonance Imaging (MRI) is crucial due to physiological phenomena and technical issues affecting diagnostic quality. Reverting from corrupted to artifact-free images is a complex task. Deep Learning (DL) models have been employed to preserve data characteristics and to identify and correct those artifacts. We proposeMAC, a novel DL-based solution to correct artifacts in multi-contrast brain MRI scans.MACoffers two models: the simulation and the correction models. The simulation model introduces perturbations similar to those occurring in an exam while preserving the original image as ground truth; this is required as publicly available datasets rarely have motion-corrupted images. It allows the addition of three types of artifacts with different degrees of severity. The DL-based correction model adds a fourth contrast to state-of-the-art solutions while improving the overall performance of the models.MACachieved the highest results in the FLAIR contrast, with a Structural Similarity Index Measure (SSIM) of 0.9803 and a Normalized Mutual Information (NMI) of 0.8030. Moreover, the model reduced training time by 63% compared to its predecessor.MACmodel can correct large volumes of images faster and adapt to different levels of artifact severity than current state-ofthe-art models, allowing for better diagnosis.

2023

Generative Adversarial Networks in Healthcare: A Case Study on MRI Image Generation

Authors
Cepa, B; Brito, C; Sousa, A;

Publication
2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG

Abstract
Medical imaging, mainly Magnetic Resonance Imaging (MRI), plays a predominant role in healthcare diagnosis. Nevertheless, the diagnostic process is prone to errors and is conditioned by available medical data, which might be insufficient. A novel solution is resorting to image generation algorithms to address these challenges. Thus, this paper presents a Deep Learning model based on a Deep Convolutional Generative Adversarial Network (DCGAN) architecture. Our model generates 2D MRI images of size 256x256, containing an axial view of the brain with a tumor. The model was implemented using ChainerMN, a scalable and flexible framework that enables faster and parallel training of Deep Learning networks. The images obtained provide an overall representation of the brain structure and the tumoral area and show considerable brain-tumor separation. For this purpose, and owing to their previous state-of-the-art results in general image-generation tasks, we conclude that GAN-based models are a promising approach for medical imaging.

2022

Cloud-Based Privacy-Preserving Medical Imaging System Using Machine Learning Tools

Authors
Alves, J; Soares, B; Brito, C; Sousa, A;

Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2022

Abstract
Healthcare environments are generating a deluge of sensitive data. Nonetheless, dealing with large amounts of data is an expensive task, and current solutions resort to the cloud environment. Additionally, the intersection of the cloud environment and healthcare data opens new challenges regarding data privacy. With this in mind, we propose MEDCLOUDCARE (MCC), a healthcare application offering medical image viewing and processing tools while integrating cloud computing and AI. Moreover, MCC provides security and privacy features, scalability and high availability. The system is intended for two user groups: health professionals and researchers. The former can remotely view, process and share medical imaging information in the DICOM format. Also, it can use pre-trained Machine Learning (ML) models to aid the analysis of medical images. The latter can remotely add, share, and deploy ML models to perform inference on DICOM images. MCC incorporates a DICOM web viewer enabling users to view and process DICOM studies, which they can also upload and store. Regarding the security and privacy of the data, all sensitive information is encrypted at rest and in transit. Furthermore, MCC is intended for cloud environments. Thus, the system is deployed using Kubernetes, increasing the efficiency, availability and scalability of the ML inference process.

2019

Electrocardiogram Beat-Classification Based on a ResNet Network

Authors
Brito, C; Machado, A; Sousa, A;

Publication
MEDINFO 2019: HEALTH AND WELLBEING E-NETWORKS FOR ALL

Abstract
When dealing with electrocardiography (ECG) the main focus relies on the classification of the heart's electric activity and deep learning has been proving its value over the years classifying the heartbeats, exhibiting great performance when doing so. Following these assumptions, we propose a deep learning model based on a ResNet architecture with convolutional ID layers to classes the beats into one of the 4 classes: normal, atrial premature contraction, premature ventricular contraction and others. Experimental results with MIT-BIH Arrhythmia Database confirmed that the model is able to perform well, obtaining an accuracy of 96% when using stochastic gradient descent (SGD) and 83% when using adaptive moment estimation (Adam), SGD also obtained F1-scores over 90% for the four classes proposed. A larger dataset was created and tested as unforeseen data for the trained model, proving that new tests should be done to improve the accuracy of it.

Supervised
thesis

2023

Adaptive questionnaires using an workflow engine

Author
Diogo Paulo da Costa Pereira

Institution
UM

2023

A Fully-Automated Pipeline for dMRI Tractography

Author
Beatriz Pedrosa Cepa

Institution
UM

2022

Software defined applications: A DevOps approach to monitoring

Author
Luís Miguel Andrade Alves

Institution
UM

2022

A Web and Machine Learning-based DICOM Image Tool

Author
Beatriz Pinto Soares

Institution
UM

2022

Mobile Identification as a Service

Author
Rafaela Cristina Riço Rodrigues

Institution
UM