Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

I’m an Assistant Professor at the University of Trás-os-Montes and Alto Douro (UTAD), Portugal since 1996 and I teach  Networks and Security. I graduated in 1993 and started working at STCP, the Public Transport's operator of Porto. I finish my master's thesis in 1998, and obtained my doctorate in 2005, in the area of computer vision related to control of automated guided vehicles.  I’m a member of Centre for Biomedical Engineering Research (C-BER), in the research center INESC TEC since 2014. My investigation is in Electrical Engineering, Electronics & Computers, with a particular focus in machine learning and biomedical image processing.

Interest
Topics
Details

Details

  • Name

    António Cunha
  • Role

    Senior Researcher
  • Since

    01st January 2014
  • Nationality

    Portugal
  • Contacts

    +351222094106
    antonio.cunha@inesctec.pt
003
Publications

2023

Special Issue on Novel Applications of Artificial Intelligence in Medicine and Health

Authors
Pereira, T; Cunha, A; Oliveira, HP;

Publication
APPLIED SCIENCES-BASEL

Abstract
Artificial Intelligence (AI) is one of the big hopes for the future of a positive revolution in the use of medical data to improve clinical routine and personalized medicine [...]

2023

Migration of a stock management application in the healthcare industry to a Web/Mobile environment: A project report

Authors
Machado, C; Cunha, A; Gouveia, AJ;

Publication
Procedia Computer Science

Abstract

2023

Lung CT image synthesis using GANs

Authors
Mendes, J; Pereira, T; Silva, F; Frade, J; Morgado, J; Freitas, C; Negrao, E; de Lima, BF; da Silva, MC; Madureira, AJ; Ramos, I; Costa, JL; Hespanhol, V; Cunha, A; Oliveira, HP;

Publication
EXPERT SYSTEMS WITH APPLICATIONS

Abstract
Biomedical engineering has been targeted as a potential research candidate for machine learning applications, with the purpose of detecting or diagnosing pathologies. However, acquiring relevant, high-quality, and heterogeneous medical datasets is challenging due to privacy and security issues and the effort required to annotate the data. Generative models have recently gained a growing interest in the computer vision field due to their ability to increase dataset size by generating new high-quality samples from the initial set, which can be used as data augmentation of a training dataset. This study aimed to synthesize artificial lung images from corresponding positional and semantic annotations using two generative adversarial networks and databases of real computed tomography scans: the Pix2Pix approach that generates lung images from the lung segmentation maps; and the conditional generative adversarial network (cCGAN) approach that was implemented with additional semantic labels in the generation process. To evaluate the quality of the generated images, two quantitative measures were used: the domain-specific Frechet Inception Distance and Structural Similarity Index. Additionally, an expert assessment was performed to measure the capability to distinguish between real and generated images. The assessment performed shows the high quality of synthesized images, which was confirmed by the expert evaluation. This work represents an innovative application of GAN approaches for medical application taking into consideration the pathological findings in the CT images and the clinical evaluation to assess the realism of these features in the generated images.

2023

A deep learning approach for automatic counting of bedbugs and grape moth

Authors
Teixeira, AC; Morais, R; Sousa, J; Peres, E; Cunha, A;

Publication
Procedia Computer Science

Abstract

2023

A Systematic Review on Automatic Insect Detection Using Deep Learning

Authors
Teixeira, AC; Ribeiro, J; Morais, R; Sousa, JJ; Cunha, A;

Publication
AGRICULTURE-BASEL

Abstract
Globally, insect pests are the primary reason for reduced crop yield and quality. Although pesticides are commonly used to control and eliminate these pests, they can have adverse effects on the environment, human health, and natural resources. As an alternative, integrated pest management has been devised to enhance insect pest control, decrease the excessive use of pesticides, and enhance the output and quality of crops. With the improvements in artificial intelligence technologies, several applications have emerged in the agricultural context, including automatic detection, monitoring, and identification of insects. The purpose of this article is to outline the leading techniques for the automated detection of insects, highlighting the most successful approaches and methodologies while also drawing attention to the remaining challenges and gaps in this area. The aim is to furnish the reader with an overview of the major developments in this field. This study analysed 92 studies published between 2016 and 2022 on the automatic detection of insects in traps using deep learning techniques. The search was conducted on six electronic databases, and 36 articles met the inclusion criteria. The inclusion criteria were studies that applied deep learning techniques for insect classification, counting, and detection, written in English. The selection process involved analysing the title, keywords, and abstract of each study, resulting in the exclusion of 33 articles. The remaining 36 articles included 12 for the classification task and 24 for the detection task. Two main approaches-standard and adaptable-for insect detection were identified, with various architectures and detectors. The accuracy of the classification was found to be most influenced by dataset size, while detection was significantly affected by the number of classes and dataset size. The study also highlights two challenges and recommendations, namely, dataset characteristics (such as unbalanced classes and incomplete annotation) and methodologies (such as the limitations of algorithms for small objects and the lack of information about small insects). To overcome these challenges, further research is recommended to improve insect pest management practices. This research should focus on addressing the limitations and challenges identified in this article to ensure more effective insect pest management.

Supervised
thesis

2022

Deep learning methods for diabetic eye disease screening and smartphone-based applications

Author
Meltem Esengönül

Institution
UTAD

2022

Automatic detection of gastric precancerous lesions on endoscopy images

Author
Ana Sofia Correia Ferreira

Institution
UTAD

2022

Automatic insect count in trap images using deep learning

Author
Ana Cláudia Carvalhais Teixeira

Institution
UTAD

2021

Classificação automática de castas de uva utilizando Deep Learning

Author
Gabriel António Pereira Santos Carneiro

Institution
UTAD

2021

Automatic glaucoma screening with low cost devices

Author
Alexandre Henrique da Costa Neto

Institution