Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
About

About

I obtained my BSc and MSc in Computer Science at the Faculty of Science in the University of Porto.

Since 2014 I have been working at INESC TEC mainly on computer vision and I am currently also a PhD student at the Faculty of Engineering in the University of Porto.

My main research goals are related to Computer Vision, also with an emphasis on Machine Learning and Virtual Reality. 

Interest
Topics
Details

Details

001
Publications

2016

Cognition inspired format for the expression of computer vision metadata

Authors
Castro, H; Monteiro, J; Pereira, A; Silva, D; Coelho, G; Carvalho, P;

Publication
MULTIMEDIA TOOLS AND APPLICATIONS

Abstract
Over the last decade noticeable progress has occurred in automated computer interpretation of visual information. Computers running artificial intelligence algorithms are growingly capable of extracting perceptual and semantic information from images, and registering it as metadata. There is also a growing body of manually produced image annotation data. All of this data is of great importance for scientific purposes as well as for commercial applications. Optimizing the usefulness of this, manually or automatically produced, information implies its precise and adequate expression at its different logical levels, making it easily accessible, manipulable and shareable. It also implies the development of associated manipulating tools. However, the expression and manipulation of computer vision results has received less attention than the actual extraction of such results. Hence, it has experienced a smaller advance. Existing metadata tools are poorly structured, in logical terms, as they intermix the declaration of visual detections with that of the observed entities, events and comprising context. This poor structuring renders such tools rigid, limited and cumbersome to use. Moreover, they are unprepared to deal with more advanced situations, such as the coherent expression of the information extracted from, or annotated onto, multi-view video resources. The work here presented comprises the specification of an advanced XML based syntax for the expression and processing of Computer Vision relevant metadata. This proposal takes inspiration from the natural cognition process for the adequate expression of the information, with a particular focus on scenarios of varying numbers of sensory devices, notably, multi-view video.

2016

Video Based Group Tracking and Management

Authors
Pereira, A; Familiar, A; Moreira, B; Terroso, T; Carvalho, P; Corte Real, L;

Publication
IMAGE ANALYSIS AND RECOGNITION (ICIAR 2016)

Abstract
Tracking objects in video is a very challenging research topic, particularly when people in groups are tracked, with partial and full occlusions and group dynamics being common difficulties. Hence, its necessary to deal with group tracking, formation and separation, while assuring the overall consistency of the individuals. This paper proposes enhancements to a group management and tracking algorithm that receives information of the persons in the scene, detects the existing groups and keeps track of the persons that belong to it. Since input information for group management algorithms is typically provided by a tracking algorithm and it is affected by noise, mechanisms for handling such noisy input tracking information were also successfully included. Performed experiments demonstrated that the described algorithm outperformed state-of-the-art approaches.

Supervised
thesis

2017

Video Based Tracking for 3D Scene Analysis

Author
Américo José Rodrigues Pereira

Institution
UP-FEUP