Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2025

An LMS with personalized content selection for professional training

Autores
Aplugi, G; Santos, A;

Publicação
World Journal of Information Systems

Abstract
A Learning management system (LMS) is considered appropriate for company training. It is increasingly used in companies or organizations as a tool to manage their online training. The company or organization should consider the implementation of an LMS that provides ease in training content selection to achieve the best use and satisfaction of its employees in the learning process. From this perspective, the present study aims to investigate the implementation of a personalized LMS to facilitate the formative content selection tailored to employees’ roles. A Survey research methodology was used to achieve this objective. Based on the literature and survey results, we propose an approach to reach the personalization of content selection.

2025

Can Llama 3 Accurately Assess Readability? A Comparative Study Using Lead Sections from Wikipedia

Autores
Rodrigues, JF; Cardoso, HL; Lopes, CT;

Publicação
RESEARCH CHALLENGES IN INFORMATION SCIENCE, RCIS 2025, PT II

Abstract
Text readability is vital for effective communication and learning, especially for those with lower information literacy. This research aims to assess Llama 3's ability to grade readability and compare its alignment with established metrics. For that purpose, we create a new dataset of article lead sections from English and Simple English Wikipedia, covering nine categories. The model is prompted to rate the readability of the texts on a grade-level scale, and an in-depth analysis of the results is conducted. While Llama 3 correlates strongly with most metrics, it may underestimate text grade levels.

2025

Beyond the Hands: Evaluating the Usability of Hands-Free Methods and Controllers for Menu Selection During an Immersive VR Experience

Autores
Monteiro, P; Peixoto, B; Gonçalves, G; Coelho, H; Barbosa, L; Melo, M; Bessa, M;

Publicação
International Journal of Human–Computer Interaction

Abstract

2025

A Tight Security Proof for SPHINCS+, Formally Verified

Autores
Barbosa, M; Dupressoir, F; Hülsing, A; Meijers, M; Strub, PY;

Publicação
ADVANCES IN CRYPTOLOGY - ASIACRYPT 2024, PT IV

Abstract
SPHINCS+ is a post-quantum signature scheme that, at the time of writing, is being standardized as SLH-DSA. It is the most conservative option for post-quantum signatures, but the original tight proofs of security were flawed- as reported by Kudinov, Kiktenko and Fedorov in 2020. In this work, we formally prove a tight security bound for SPHINCS+ using the EasyCrypt proof assistant, establishing greater confidence in the general security of the scheme and that of the parameter sets considered for standardization. To this end, we reconstruct the tight security proof presented by Hulsing and Kudinov (in 2022) in a modular way. A small but important part of this effort involves a complex argument relating four different games at once, of a form not yet formalized in EasyCrypt (to the best of our knowledge). We describe our approach to overcoming this major challenge, and develop a general formal verification technique aimed at this type of reasoning. Enhancing the set of reusable EasyCrypt artifacts previously produced in the formal verification of stateful hash-based cryptographic constructions, we (1) improve and extend the existing libraries for hash functions and (2) develop new libraries for fundamental concepts related to hash-based cryptographic constructions, including Merkle trees. These enhancements, along with the formal verification technique we develop, further ease future formal verification endeavors in EasyCrypt, especially those concerning hash-based cryptographic constructions.

2025

<i>MedShapeNet</i> - a large-scale dataset of 3D medical shapes for computer vision

Autores
Li, JN; Zhou, ZW; Yang, JC; Pepe, A; Gsaxner, C; Luijten, G; Qu, CY; Zhang, TZ; Chen, XX; Li, WX; Wodzinski, M; Friedrich, P; Xie, KX; Jin, Y; Ambigapathy, N; Nasca, E; Solak, N; Melito, GM; Vu, VD; Memon, AR; Schlachta, C; De Ribaupierre, S; Patel, R; Eagleson, R; Chen, XJ; Mächler, H; Kirschke, JS; de la Rosa, E; Christ, PF; Li, HB; Ellis, DG; Aizenberg, MR; Gatidis, S; Küstner, T; Shusharina, N; Heller, N; Andrearczyk, V; Depeursinge, A; Hatt, M; Sekuboyina, A; Löffler, MT; Liebl, H; Dorent, R; Vercauteren, T; Shapey, J; Kujawa, A; Cornelissen, S; Langenhuizen, P; Ben Hamadou, A; Rekik, A; Pujades, S; Boyer, E; Bolelli, F; Grana, C; Lumetti, L; Salehi, H; Ma, J; Zhang, Y; Gharleghi, R; Beier, S; Sowmya, A; Garza Villarreal, EA; Balducci, T; Angeles Valdez, D; Souza, R; Rittner, L; Frayne, R; Ji, Y; Ferrari, V; Chatterjee, S; Dubost, F; Schreiber, S; Mattern, H; Speck, O; Haehn, D; John, C; Nürnberger, A; Pedrosa, J; Ferreira, C; Aresta, G; Cunha, A; Campilho, A; Suter, Y; Garcia, J; Lalande, A; Vandenbossche, V; Van Oevelen, A; Duquesne, K; Mekhzoum, H; Vandemeulebroucke, J; Audenaert, E; Krebs, C; van Leeuwen, T; Vereecke, E; Heidemeyer, H; Röhrig, R; Hölzle, F; Badeli, V; Krieger, K; Gunzer, M; Chen, JX; van Meegdenburg, T; Dada, A; Balzer, M; Fragemann, J; Jonske, F; Rempe, M; Malorodov, S; Bahnsen, FH; Seibold, C; Jaus, A; Marinov, Z; Jaeger, PF; Stiefelhagen, R; Santos, AS; Lindo, M; Ferreira, A; Alves, V; Kamp, M; Abourayya, A; Nensa, F; Hörst, F; Brehmer, A; Heine, L; Hanusrichter, Y; Wessling, M; Dudda, M; Podleska, LE; Fink, MA; Keyl, J; Tserpes, K; Kim, MS; Elhabian, S; Lamecker, H; Zukic, D; Paniagua, B; Wachinger, C; Urschler, M; Duong, L; Wasserthal, J; Hoyer, PF; Basu, O; Maal, T; Witjes, MJH; Schiele, G; Chang, TC; Ahmadi, SA; Luo, P; Menze, B; Reyes, M; Deserno, TM; Davatzikos, C; Puladi, B; Fua, P; Yuille, AL; Kleesiek, J; Egger, J;

Publicação
BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK

Abstract
Objectives: The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models). However, a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instruments is missing. Methods: We present MedShapeNet to translate data-driven vision algorithms to medical applications and to adapt state-of-the-art vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. We present use cases in classifying brain tumors, skull reconstructions, multi-class anatomy completion, education, and 3D printing. Results: By now, MedShapeNet includes 23 datasets with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. Conclusions: MedShapeNet contains medical shapes from anatomy and surgical instruments and will continue to collect data for benchmarks and applications. The project page is: https://medshapenet.ikim.nrw/.

2025

Function-Oriented Programming Attacks on ARM Cortex-M Processors

Autores
André Cirne; Patrícia R. Sousa; Luís Antunes; João S. Resende;

Publicação
IEEE Access

Abstract

  • 35
  • 4235