Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2025

It's the moment of truth: a longitudinal study of touchpoint influence on business-to-business relationships

Autores
Cambra Fierro, J; Patrício, L; Polo Redondo, Y; Trifu, A;

Publicação
JOURNAL OF RESEARCH IN INTERACTIVE MARKETING

Abstract
Purpose - Customer-provider relationships unfold through multiple touchpoints across different channels. However, some touchpoints are more important than others. Such important touchpoints are viewed as moments of truth (MOTs). This study examines the impact of a series of touchpoints on an MOT, and the role MOTs play in determining future profitability and other behavioral outcomes (e.g. customer retention and customer cross-buy) in a business-to-business (B2B) context. Design/methodology/approach - Building upon social exchange theory, a conceptual model is proposed and tested that examines the impact of human, digital, and physical touchpoints and past MOTs on customer evaluation of a current MOT and on future customer outcomes. This research employs a longitudinal methodology based on a unique panel dataset of 2,970 B2B customers. Findings - Study results show that all touchpoints significantly contribute to MOTs, while human and physical touchpoints maintain their primacy during MOTs. The impact of MOTs on future customer outcomes is also demonstrated. Practical implications - This study highlights the need for prioritizing human and physical touchpoints in managing MOTs, and for carefully managing MOTs across time. Originality/value - Given its B2B outlook and longitudinal approach, this research contributes to the multichannel and interactive marketing literature by determining relevant touchpoints for B2B customers.

2025

Screening Urban Soil Contamination in Rome: Insights from XRF and Multivariate Analysis

Autores
Chandramohan, MS; da Silva, IM; Ribeiro, RP; Jorge, A; da Silva, JE;

Publicação
ENVIRONMENTS

Abstract
This study investigates spatial distribution and chemical elemental composition screening in soils in Rome (Italy) using X-ray fluorescence analysis. Fifty-nine soil samples were collected from various locations within the urban areas of the Rome municipality and were analyzed for 19 elements. Multivariate statistical techniques, including nonlinear mapping, principal component analysis, and hierarchical cluster analysis, were employed to identify clusters of similar soil samples and their spatial distribution and to try to obtain environmental quality information. The soil sample clusters result from natural geological processes and anthropogenic activities on soil contamination patterns. Spatial clustering using the k-means algorithm further identified six distinct clusters, each with specific geographical distributions and elemental characteristics. Hence, the findings underscore the importance of targeted soil assessments to ensure the sustainable use of land resources in urban areas.

2025

Living with chemotherapy-induced peripheral neuropathy: A qualitative meta-synthesis of patient experiences

Autores
Amarelo, A; Amarelo, B; Ferreira, MC; Fernandes, CS;

Publicação
EUROPEAN JOURNAL OF ONCOLOGY NURSING

Abstract
Purpose: To aggregate, interpret, and synthesize findings from qualitative studies on patients' experiences with chemotherapy-induced peripheral neuropathy (CIPN). Methods: A qualitative metasynthesis was conducted following the thematic synthesis approach of Thomas & Harden. A systematic literature search was performed in MEDLINE, CINAHL, Psychology and Behavioral Sciences Collection, and Scopus, including studies published up to December 2024. Two researchers independently conducted the screening and data extraction. They also independently evaluated the quality of the included studies. The data from these studies were then thematically analyzed and synthesized using Dorothea Orem's model. Results: Eighteen studies were included. Four main categories were identified: (1) Physical and Functional Impact of CIPN, (2) Emotional and Psychological Impact, (3) Coping Strategies and Self-management, and (4) Support and Barriers to Health. The findings revealed distinct self-care deficits related to functional limitations, emotional distress, and coping challenges. Utilizing Orem's Nursing Theory of Self-Care Deficit, these deficits were mapped onto different levels of nursing intervention, ranging from compensatory support to educational and self-management strategies, emphasizing an action-oriented approach in patient care. Conclusions: This metasynthesis highlights the complex and multidimensional effects of peripheral neuropathy on the lives of cancer patients. Applying Orem's model underscores the critical role of nurses in addressing healthcare system gaps, functional impairments, and long-term adaptation challenges to enhance supportive care for individuals suffering from CIPN.

2025

Ancient Greek Technology: An Immersive Learning Use Case Described Using a Co-Intelligent Custom ChatGPT Assistant

Autores
Kasapakis, V; Morgado, L;

Publicação
CoRR

Abstract

2025

An Integrated Framework to Address Last-Mile Delivery Problem in Large-Scale Cities by Combination of Machine Learning and Optimisation

Autores
Silva, R; Ramos, G; Salimi, F;

Publicação
SN Computer Science

Abstract
The main goal of this paper was to develop, implement, and test a practical framework for large-scale last-mile delivery problems that employ a combination of optimisation and machine learning while focussing on different routing methods. Delivery companies in big cities choose delivery orders based on the tacit knowledge of experienced drivers, since solving a large optimisation model with several variables is not a practical solution to meet their daily needs. This framework includes three phases of districting, sequencing, and routing, and in total 30 different variants were tested in different capacities. Using the power of machine learning, a model is trained and tuned to predict driving road distances, allowing the implementation of the whole framework and improving performance from analysing 2983 stops in several hours to 58,192 stops in less than 15 minutes. The results demonstrated that Inter 1 - Centroids is the best inter-district connection method, and one of the best variants in this framework is variant 26 which managed to decrease up to 34,77% total distances with 79 fewer drivers in a full month analysis compared to the original routes of the delivery company. © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025.

2025

IC-SNI: measuring nodes' influential capability in complex networks through structural and neighboring information

Autores
Nandi, S; Malta, MC; Maji, G; Dutta, A;

Publicação
KNOWLEDGE AND INFORMATION SYSTEMS

Abstract
Influential nodes are the important nodes that most efficiently control the propagation process throughout the network. Among various structural-based methods, degree centrality, k-shell decomposition, or their combination identify influential nodes with relatively low computational complexity, making them suitable for large-scale network analysis. However, these methods do not necessarily explore nodes' underlying structure and neighboring information, which poses a significant challenge for researchers in developing timely and efficient heuristics considering appropriate network characteristics. In this study, we propose a new method (IC-SNI) to measure the influential capability of the nodes. IC-SNI minimizes the loopholes of the local and global centrality and calculates the topological positional structure by considering the local and global contribution of the neighbors. Exploring the path structural information, we introduce two new measurements (connectivity strength and effective distance) to capture the structural properties among the neighboring nodes. Finally, the influential capability of a node is calculated by aggregating the structural and neighboring information of up to two-hop neighboring nodes. Evaluated on nine benchmark datasets, IC-SNI demonstrates superior performance with the highest average ranking correlation of 0.813 with the SIR simulator and a 34.1% improvement comparing state-of-the-art methods in identifying influential spreaders. The results show that IC-SNI efficiently identifies the influential spreaders in diverse real networks by accurately integrating structural and neighboring information.

  • 62
  • 4212