2025
Autores
Zhao A.P.; Li S.; Li Z.; Ma Z.; Huo D.; Hernando-Gil I.; Alhazmi M.;
Publicação
IEEE Transactions on Industry Applications
Abstract
The increasing reliance on Networked Microgrids (NMGs) for decentralized energy management introduces unprecedented cybersecurity risks, particularly in the context of False Data Injection Attacks (FDIA). While traditional FDIA studies have primarily focused on network-based intrusions, this work explores a novel cyber-physical attack vector leveraging Unmanned Aerial Vehicles (UAVs) to execute sophisticated cyberattacks on microgrid operations. UAVs, equipped with communication jamming and data spoofing capabilities, can dynamically infiltrate microgrid communication networks, manipulate sensor data, and compromise power system stability. This paper presents a multi-objective optimization framework for UAV-assisted FDIA, incorporating Non-dominated Sorting Genetic Algorithm III (NSGA-III) to maximize attack duration, disruption impact, stealth, and energy efficiency. A comprehensive mathematical model is formulated to capture the intricate interplay between UAV operational constraints, cyberattack execution, and microgrid vulnerabilities. The model integrates flight path optimization, energy consumption constraints, signal interference effects, and adaptive attack strategies, ensuring that UAVs can sustain long-duration cyberattacks while minimizing detection risk. Results indicate that UAV-assisted cyberattacks can induce power imbalances of up to 15%, increase operational costs by 30%, and cause voltage deviations exceeding 0.10 p.u.. Furthermore, analysis of attack success rates vs. detection mechanisms highlights the limitations of conventional rule-based anomaly detection, reinforcing the need for adaptive AI-driven cybersecurity defenses. The findings underscore the urgent necessity for advanced intrusion detection systems, UAV tracking technologies, and resilient microgrid architectures to mitigate the risks posed by airborne cyber threats.
2025
Autores
Santos, J; Montenegro, H; Bonci, E; Cardoso, MJ; Cardoso, JS;
Publicação
Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care - Second Deep Breast Workshop, Deep-Breath 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings
Abstract
Breast cancer patients often face difficulties when choosing among diverse surgeries. To aid patients, this paper proposes ACID-GAN (Anatomically and Clinically Informed Deep Generative Adversarial Network), a conditional generative model for predicting post-operative breast cancer outcomes using deep learning. Built on Pix2Pix, the model incorporates clinical metadata, such as surgery type and cancer laterality, by introducing a dedicated encoder for semantic supervision. Further improvements include colour preservation and anatomically informed losses, as well as clinical supervision via segmentation and classification modules. Experiments on a private dataset demonstrate that the model produces realistic, context-aware predictions. The results demonstrate that the model presents a meaningful trade-off between generating precise, anatomically defined results and maintaining patient-specific appearance, such as skin tone and shape. © 2025 Elsevier B.V., All rights reserved.
2025
Autores
Lopes, D; Pereira, T; Gonçalves, A; Cunha, F; Lopes, F; Antunes, J; Santos, V; Coutinho, F; Barreiros, J; Duraes, J; Santos, P; Simoes, F; Ferreira, P; Freitas, EDCD; Trovao, JPF; Ferreira, JP; Ferreira, NMF;
Publicação
APPLIED SCIENCES-BASEL
Abstract
This paper presents the development of fleet management software for mobile robots, including AGV and AMR technologies, within the scope of a case study from the GreenAuto project. The system was designed to integrate position and status data from different robots, unifying this information into a single map. To achieve this, a web-based platform was developed to allow the simultaneous, real-time visualization of all robots in operation. However, the main challenge of this research lies in the heterogeneity of the fleet, which comprises robots of different makes and models from various manufacturers, each using distinct data formats. The proposed approach addresses this by facilitating fleet monitoring and management, ensuring a greater efficiency and coordination in the robot movement. The results demonstrate that the platform improves the traceability and operational supervision, promoting the optimized management of mobile robots. It is concluded that the proposed solution contributes to industrial automation by providing an intuitive and centralized interface, enabling future expansions for new functionalities and the integration with other emerging technologies. The proposed system demonstrated efficiency in updating and supervising operations, with an average latency of 120 ms for task status updates and an interface refresh rate of less than 1 s, enabling near real-time supervision and facilitating operational decision-making.
2025
Autores
Fernandes, L; Pereira, T; Oliveira, HP;
Publicação
IEEE ACCESS
Abstract
Segmentation of lung nodules in CT images is an important step during the clinical evaluation of patients with lung cancer. Furthermore, early assessment of the cancer is crucial to increase the overall survival chances of patients with such disease, and the segmentation of lung nodules can help detect the cancer in its early stages. Consequently, there are many works in the literature that explore the use of neural networks for the segmentation of lung nodules. However, these frameworks tend to rely on accurate labelling of the nodule centre to then crop the input image. Although such works are able to achieve remarkable results, they do not take into account that the healthcare professional may fail to correctly label the centre of the nodule. Therefore, in this work, we propose a new framework based on the U-Net model that allows to correct such inaccuracies in an interactive fashion. It is composed of two U-Net models in cascade, where the first model is used to predict a rough estimation of the lung nodule location and the second model refines the generated segmentation mask. Our results show that the proposed framework is able to be more robust than the studied baselines. Furthermore, it is able to achieve state-of-the-art performance, reaching a Dice of 91.12% when trained and tested on the LIDC-IDRI public dataset.
2025
Autores
Capela, D; Lopes, T; Dias, F; Ferreira, MFS; Teixeira, J; Lima, A; Jorge, PAS; Silva, NA; Guimaraes, D;
Publicação
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY
Abstract
Mineral identification is a challenging task in geological sciences, which often implies multiple analyses of the physical and chemical properties of the samples for an accurate result. This task is particularly critical for the mining industry, where proper and fast mineral identification may translate into major efficiency and performance gains, such as in the case of the lithium mining industry. In this study, a mineral identification algorithm optimized for analyzing lithium-bearing samples using Laser-induced breakdown spectroscopy (LIBS) imaging, is put to the test with a set of representative samples. The algorithm incorporates advanced spectral processing techniques-baseline removal, Gaussian filtering, and data normalization-alongside unsupervised clustering to generate interpretable classification maps and auxiliary charts. These enhancements facilitate rapid and precise labelling of mineral compositions, significantly improving the interpretability and interactivity of the user interface. Extensive testing on diverse mineral samples with varying complexities confirmed the algorithm's robustness and broad applicability. Challenges related to sample granulometry and LIBS resolution were identified, suggesting future directions for optimizing system resolution to enhance classification accuracy in complex mineral matrices. The integration of this advanced algorithm with LIBS technology holds the potential to accelerate the mineral evaluation, paving the way for more efficient and sustainable mineral exploration.
2025
Autores
Teixeira, LF; Montenegro, H; Bonci, E; Cardoso, MJ; Cardoso, JS;
Publicação
Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care - Second Deep Breast Workshop, Deep-Breath 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings
Abstract
Breast cancer locoregional treatment includes a wide variety of procedures with diverse aesthetic outcomes. The aesthetic assessment of such procedures is typically subjective, hindering the fair comparison between their outcomes, and consequently restricting evidence-based improvements. Most objective evaluation tools were developed for conservative surgery, focusing on asymmetries while ignoring other relevant traits. To overcome these limitations, we propose SiameseOrdinalCLIP, an ordinal classification network based on image-text matching and pairwise ranking optimisation for the aesthetic evaluation of breast cancer treatment. Furthermore, we integrate a concept bottleneck module into the network for increased explainability. Experiments on a private dataset show that the proposed model surpasses the state-of-the-art aesthetic evaluation and ordinal classification networks. © 2025 Elsevier B.V., All rights reserved.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.