2020
Autores
Balado, J; Sousa, R; Diaz Vilarino, L; Arias, P;
Publicação
AUTOMATION IN CONSTRUCTION
Abstract
The application of Deep Learning techniques to point clouds for urban object classification is limited by the large number of samples needed. Acquiring and tagging point clouds is more expensive and tedious labour than its image equivalent process. Point cloud online datasets contain few samples for Deep Learning or not always the desired classes This work focuses on minimizing the use of point cloud samples for neural network training in urban object classification. The method proposed is based on the conversion of point clouds to images (pc-images) because it enables: the use of Convolutional Neural Networks, the generation of several samples (images) per object (point clouds) by means of multi-view, and the combination of pc-images with images from online datasets (ImageNet and Google Images). The study is conducted with ten classes of objects extracted from two street point clouds from two different cities. The network selected for the job is the InceptionV3. The training set consists of 5000 online images with a variable percentage (0% to 10%) of pc-images. The validation and testing sets are composed exclusively of pc-images. Although the network trained only with online images reached 47% accuracy, the inclusion of a small percentage of pc-images in the training set improves the classification to 99.5% accuracy with 6% pc-images. The network is also applied at IQmulus & TerraMobilita Contest dataset and it allows the correct classification of elements with few samples.
2020
Autores
Veloso, B; Gama, J; Martins, C; Espanha, R; Azevedo, R;
Publicação
ACM SIGAPP Applied Computing Review
Abstract
2020
Autores
Rheinbay, E; PCAWG Drivers and Functional Interpretation Working Group,; Nielsen, MM; Abascal, F; Wala, JA; Shapira, O; Tiao, G; Hornshøj, H; Hess, JM; Juul, RI; Lin, Z; Feuerbach, L; Sabarinathan, R; Madsen, T; Kim, J; Mularoni, L; Shuai, S; Lanzós, A; Herrmann, C; Maruvka, YE; Shen, C; Amin, SB; Bandopadhayay, P; Bertl, J; Boroevich, KA; Busanovich, J; Carlevaro-Fita, J; Chakravarty, D; Chan, CWY; Craft, D; Dhingra, P; Diamanti, K; Fonseca, NA; Gonzalez-Perez, A; Guo, Q; Hamilton, MP; Haradhvala, NJ; Hong, C; Isaev, K; Johnson, TA; Juul, M; Kahles, A; Kahraman, A; Kim, Y; Komorowski, J; Kumar, K; Kumar, S; Lee, D; Lehmann, K; Li, Y; Liu, EM; Lochovsky, L; Park, K; Pich, O; Roberts, ND; Saksena, G; Schumacher, SE; Sidiropoulos, N; Sieverling, L; Sinnott-Armstrong, N; Stewart, C; Tamborero, D; Tubio, JMC; Umer, HM; Uusküla-Reimand, L; Wadelius, C; Wadi, L; Yao, X; Zhang, C; Zhang, J; Haber, JE; Hobolth, A; Imielinski, M; Kellis, M; Lawrence, MS; von Mering, C; Nakagawa, H; Raphael, BJ; Rubin, MA; Sander, C; Stein, LD; Stuart, JM; Tsunoda, T; Wheeler, DA; Johnson, R; Reimand, J; Gerstein, M; Khurana, E; Campbell, PJ; López-Bigas, N; Weischenfeldt, J; Beroukhim, R; Martincorena, I; Pedersen, JS; Getz, G; PCAWG Structural Variation Working Group,; PCAWG Consortium,;
Publicação
Nat.
Abstract
The discovery of drivers of cancer has traditionally focused on protein-coding genes1–4. Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium5 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods. For structural variants, we present two methods of driver discovery, and identify regions that are significantly affected by recurrent breakpoints and recurrent somatic juxtapositions. Our analyses confirm previously reported drivers6,7, raise doubts about others and identify novel candidates, including point mutations in the 5' region of TP53, in the 3' untranslated regions of NFKBIZ and TOB1, focal deletions in BRD4 and rearrangements in the loci of AKR1C genes. We show that although point mutations and structural variants that drive cancer are less frequent in non-coding genes and regulatory sequences than in protein-coding genes, additional examples of these drivers will be found as more cancer genomes become available. © 2020, The Author(s).
2020
Autores
Estévez, O; Anibarro, L; Garet, E; Pallares, Á; Barcia, L; Calviño, L; Maueia, C; Mussá, T; Fdez Riverola, F; Glez Peña, D; Reboiro Jato, M; López Fernández, H; Fonseca, NA; Reljic, R; González Fernández, Á;
Publicação
Frontiers in Immunology
Abstract
A better understanding of the response against Tuberculosis (TB) infection is required to accurately identify the individuals with an active or a latent TB infection (LTBI) and also those LTBI patients at higher risk of developing active TB. In this work, we have used the information obtained from studying the gene expression profile of active TB patients and their infected –LTBI- or uninfected –NoTBI- contacts, recruited in Spain and Mozambique, to build a class-prediction model that identifies individuals with a TB infection profile. Following this approach, we have identified several genes and metabolic pathways that provide important information of the immune mechanisms triggered against TB infection. As a novelty of our work, a combination of this class-prediction model and the direct measurement of different immunological parameters, was used to identify a subset of LTBI contacts (called TB-like) whose transcriptional and immunological profiles are suggestive of infection with a higher probability of developing active TB. Validation of this novel approach to identifying LTBI individuals with the highest risk of active TB disease merits further longitudinal studies on larger cohorts in TB endemic areas. © Copyright © 2020 Estévez, Anibarro, Garet, Pallares, Barcia, Calviño, Maueia, Mussá, Fdez-Riverola, Glez-Peña, Reboiro-Jato, López-Fernández, Fonseca, Reljic and González-Fernández.
2020
Autores
Prieto, J; Das, AK; Ferretti, S; Pinto, A; Corchado, JM;
Publicação
BLOCKCHAIN
Abstract
2020
Autores
Santos, L; Santos, F; Mendes, J; Costa, P; Lima, J; Reis, R; Shinde, P;
Publicação
ROBOTICA
Abstract
Steep slope vineyards are a complex scenario for the development of ground robots. Planning a safe robot trajectory is one of the biggest challenges in this scenario, characterized by irregular surfaces and strong slopes (more than 35 degrees). Moving the robot through a pile of stones, spots with high slope or/and with wrong robot yaw may result in an abrupt fall of the robot, damaging the equipment and centenary vines, and sometimes imposing injuries to humans. This paper presents a novel approach for path planning aware of center of mass of the robot for application in sloppy terrains. Agricultural robotic path planning (AgRobPP) is a framework that considers the A* algorithm by expanding inner functions to deal with three main inputs: multi-layer occupation grid map, altitude map and robot's center of mass. This multi-layer grid map is updated by obstacles taking into account the terrain slope and maximum robot posture. AgRobPP is also extended with algorithms for local trajectory replanning during the execution of a trajectory that is blocked by the presence of an obstacle, always assuring the safety of the re-planned path. AgRobPP has a novel PointCloud translator algorithm called PointCloud to grid map and digital elevation model (PC2GD), which extracts the occupation grid map and digital elevation model from a PointCloud. This can be used in AgRobPP core algorithms and farm management intelligent systems as well. AgRobPP algorithms demonstrate a great performance with the real data acquired from AgRob V16, a robotic platform developed for autonomous navigation in steep slope vineyards.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.