Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Ricardo Sousa, é doutorado em Engenharia Eletrotécnica e de Computadores pela Faculdade de Engenharia da Universidade do Porto desde 2011 e atualmente é investigador no Laboratório de Inteligência Artificial e Apoio à Decisão (LIAAD) no INESC TEC. Participou em projetos europeus (e.g., MAESTRA), nacionais (e.g., ADIRA4.0) e projetos científicos com empresas (e.g., NDTech-Amorim) relacionados com Processamento de Sinal, Data Mining e Machine Learning. Atualmente, coordenada equipas num programa mobilizador PRODUTECH (relacionado com a Gestão de Produção e Qualidade) e num projeto P2020/FCT/MIT Portugal (Tecnologia para transformadores de potência). Tem interesse específicos nas áreas de Manutenção e Qualidade Preditiva, Process Mining e Previsão com aplicação na área da Indústria/Produção. Deu aulas na Faculdade de Engenharia da Universidade do Porto, em cadeiras de programação e sistemas de informação. Co-orientou/orientou mais de 17 dissertações de mestrado nas áreas de Processamento de Sinal e Data mining/Machine Learning.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Ricardo Teixeira Sousa
  • Cargo

    Adjunto da Coordenação de Centro
  • Desde

    16 setembro 2005
011
Publicações

2023

Unsupervised Online Event Ranking for IT Operations

Autores
Mendes, TC; Barata, AA; Pereira, M; Moreira, JM; Camacho, R; Sousa, RT;

Publicação
Intelligent Data Engineering and Automated Learning - IDEAL 2023 - 24th International Conference, Évora, Portugal, November 22-24, 2023, Proceedings

Abstract
Keeping high service levels of a fast-growing number of servers is crucial and challenging for IT operations teams. Online monitoring systems trigger many occurrences that experts find hard to keep up with. In addition, most of the triggered warnings do not correspond to real, critical problems, making it difficult for technicians to know which to focus on and address in a timely manner. Outlier and concept drift detection techniques can be applied to multiple streams of readings related to server monitoring metrics, but they also generate many False Positives. Ranking algorithms can already prioritize relevant results in information retrieval and recommender systems. However, these approaches are supervised, making them inapplicable in event detection on data streams. We propose a framework that combines event aggregations and uses a customized clustering algorithm to score and rank alarms in the context of IT operations. To the best of our knowledge, this is the first unsupervised, online, high-dimensional approach to rank IT ops events and contributes to advancing knowledge about associated key concepts and challenges of this problem. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.

2022

Exploiting BIM Objects for Synthetic Data Generation toward Indoor Point Cloud Classification Using Deep Learning

Autores
Frías, E; Pinto, J; Sousa, R; Lorenzo, H; Díaz Vilariño, L;

Publicação
Journal of Computing in Civil Engineering

Abstract
Advances in technology are leading to more and more devices integrating sensors capable of acquiring data quickly and with high accuracy. Point clouds are no exception. Therefore, there is increased research interest in the large amount of available light detection and ranging (LiDAR) data by point cloud classification using artificial intelligence. Nevertheless, point cloud labeling is a time-consuming task. Hence the amount of labeled data is still scarce. Data synthesis is gaining attention as an alternative to increase the volume of classified data. At the same time, the amount of Building Information Models (BIMs) provided by manufacturers on website databases is increasing. In line with these recent trends, this paper presents a deep-learning framework for classifying point cloud objects based on synthetic data sets created from BIM objects. The method starts by transforming BIM objects into point clouds deriving a data set consisting of 21 object classes characterized with various perturbation patterns. Then, the data set is split into four subsets to carry out the evaluation of synthetic data on the implemented flexible two-dimensional (2D) deep neural framework. In the latter, binary or greyscale images can be generated from point clouds by both orthographic or perspective projection to feed the network. Moreover, the surface variation feature was computed in order to aggregate more geometric information to images and to evaluate how it influences the object classification. The overall accuracy is over 85% in all tests when orthographic images are used. Also, the use of greyscale images representing surface variation improves performance in almost all tests although the computation of this feature may not be robust in point clouds with complex geometry or perturbations. © 2022 American Society of Civil Engineers.

2022

Exploiting BIM Objects for Synthetic Data Generation toward Indoor Point Cloud Classification Using Deep Learning

Autores
Frias, E; Pinto, J; Sousa, R; Lorenzo, H; Diaz Vilarino, L;

Publicação
JOURNAL OF COMPUTING IN CIVIL ENGINEERING

Abstract
Advances in technology are leading to more and more devices integrating sensors capable of acquiring data quickly and with high accuracy. Point clouds are no exception. Therefore, there is increased research interest in the large amount of available light detection and ranging (LiDAR) data by point cloud classification using artificial intelligence. Nevertheless, point cloud labeling is a time-consuming task. Hence the amount of labeled data is still scarce. Data synthesis is gaining attention as an alternative to increase the volume of classified data. At the same time, the amount of Building Information Models (BIMs) provided by manufacturers on website databases is increasing. In line with these recent trends, this paper presents a deep-learning framework for classifying point cloud objects based on synthetic data sets created from BIM objects. The method starts by transforming BIM objects into point clouds deriving a data set consisting of 21 object classes characterized with various perturbation patterns. Then, the data set is split into four subsets to carry out the evaluation of synthetic data on the implemented flexible two-dimensional (2D) deep neural framework. In the latter, binary or greyscale images can be generated from point clouds by both orthographic or perspective projection to feed the network. Moreover, the surface variation feature was computed in order to aggregate more geometric information to images and to evaluate how it influences the object classification. The overall accuracy is over 85% in all tests when orthographic images are used. Also, the use of greyscale images representing surface variation improves performance in almost all tests although the computation of this feature may not be robust in point clouds with complex geometry or perturbations. (C) 2022 American Society of Civil Engineers.

2022

Exploiting BIM Objects for Synthetic Data Generation toward Indoor Point Cloud Classification Using Deep Learning

Autores
Frías, E; Pinto, J; Sousa, R; Lorenzo, H; Díaz Vilariño, L;

Publicação
Journal of Computing in Civil Engineering

Abstract

2020

BRIGHT-Drift-Aware Demand Predictions for Taxi Networks

Autores
Saadallah, A; Moreira Matias, L; Sousa, R; Khiari, J; Jenelius, E; Gama, J;

Publicação
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Abstract
Massive data broadcast by GPS-equipped vehicles provide unprecedented opportunities. One of the main tasks in order to optimize our transportation networks is to build data-driven real-time decision support systems. However, the dynamic environments where the networks operate disallow the traditional assumptions required to put in practice many off-the-shelf supervised learning algorithms, such as finite training sets or stationary distributions. In this paper, we propose BRIGHT: a drift-aware supervised learning framework to predict demand quantities. BRIGHT aims to provide accurate predictions for short-term horizons through a creative ensemble of time series analysis methods that handles distinct types of concept drift. By selecting neighborhoods dynamically, BRIGHT reduces the likelihood of overfitting. By ensuring diversity among the base learners, BRIGHT ensures a high reduction of variance while keeping bias stable. Experiments were conducted using three large-scale heterogeneous real-world transportation networks in Porto (Portugal), Shanghai (China), and Stockholm (Sweden), as well as with controlled experiments using synthetic data where multiple distinct drifts were artificially induced. The obtained results illustrate the advantages of BRIGHT in relation to state-of-the-art methods for this task.

Teses
supervisionadas

2022

An exploratory data analysis of the TTR-FAP disease in Portugal

Autor
Rúben Xavier Correia Lôpo

Instituição
UP-FCUP

2020

Video-based music generation

Autor
Serkan Sulun

Instituição
UP-FEUP

2019

Sign Language Recognition: Integrating Prior Domain Knowledge into Deep Neural Networks

Autor
Pedro Miguel Martins Ferreira

Instituição
UP-FEUP

2018

Aural exploration of post-tonal music theory: an automatic musical variations generator in MAX

Autor
Allen Alonso Torres-Matarrita

Instituição
UP-FEUP

2017

A Data Driven Methodology for Measuring the Performance of Urban Public Transport Systems

Autor
Vera Lúcia Freitas da Costa

Instituição
UP-FEUP