Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Mestre em Bioengenharia com especialização em Engenharia Biomédica pela Faculdade de Engenharia da Universidade do Porto, Portugal. O meu projeto de dissertação culminou no desenvolvimento de um sistema robótico autónomo capaz de executar tarefas repetitivas em ambiente laboratorial. Neste contexto surgiu o interesse pelo ramo da robótica, no qual pretendi integrar e adquirir mais conhecimentos em áreas como mecânica, eletrónica, ciências da computação e biomédica. Em Setembro de 2016 integrei o grupo CRIIS pertencente ao INESC TEC como engenheira de I&D no desenvolvimento de novas soluções robóticas para responder a necessidades industriais. As minhas principais atividades incluem modelação de sistemas mecânicos e desenvolvimento eletrónico e de software. 

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Cláudia Daniela Rocha
  • Cargo

    Investigador
  • Desde

    01 fevereiro 2016
024
Publicações

2024

Inspection of Part Placement Within Containers Using Point Cloud Overlap Analysis for an Automotive Production Line

Autores
Costa, M; Dias, J; Nascimento, R; Rocha, C; Veiga, G; Sousa, A; Thomas, U; Rocha, L;

Publicação
Lecture Notes in Mechanical Engineering

Abstract
Reliable operation of production lines without unscheduled disruptions is of paramount importance for ensuring the proper operation of automated working cells involving robotic systems. This article addresses the issue of preventing disruptions to an automotive production line that can arise from incorrect placement of aluminum car parts by a human operator in a feeding container with 4 indexing pins for each part. The detection of the misplaced parts is critical for avoiding collisions between the containers and a high pressure washing machine and also to avoid collisions between the parts and a robotic arm that is feeding parts to a air leakage inspection machine. The proposed inspection system relies on a 3D sensor for scanning the parts inside a container and then estimates the 6 DoF pose of the container followed by an analysis of the overlap percentage between each part reference point cloud and the 3D sensor data. When the overlap percentage is below a given threshold, the part is considered as misplaced and the operator is alerted to fix the part placement in the container. The deployment of the inspection system on an automotive production line for 22 weeks has shown promising results by avoiding 18 hours of disruptions, since it detected 407 containers having misplaced parts in 4524 inspections, from which 12 were false negatives, while no false positives were reported, which allowed the elimination of disruptions to the production line at the cost of manual reinspection of 0.27% of false negative containers by the operator. © 2024, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2023

Quality Control of Casting Aluminum Parts: A Comparison of Deep Learning Models for Filings Detection

Autores
Nascimento, R; Ferreira, T; Rocha, C; Filipe, V; Silva, MF; Veiga, G; Rocha, L;

Publicação
2023 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
Quality control inspection systems are crucial and a key factor in maintaining and ensuring the integrity of any product. The quality inspection task is a repetitive task, when performed by operators only, it can be slow and susceptible to failures due to the lack of attention and fatigue. This work focuses on the inspection of parts made of high-pressure diecast aluminum for components of the automotive industry. In the present case study, last year, 18240 parts needed to be reinspected, requiring approximately 96 hours, a time that could be spent on other tasks. This article performs a comparison of four deep learning models: Faster R-CNN, RetinaNet, YOLOv7, and YOLOv7-tiny, to find out which one is more suited to perform the quality inspection task of detecting metal filings on casting aluminum parts. As for this use-case the prototype must be highly intolerant to False Negatives, that is, the part being defective and passing undetected, Faster R-CNN was considered the bestperforming model based on a Recall value of 96.00%.

2023

Knee positioning systems for X-ray environment: a literature review

Autores
Lopes, C; Vilaca, A; Rocha, C; Mendes, J;

Publicação
PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE

Abstract
The knee is one of the most stressed joints of the human body, being susceptible to ligament injuries and degenerative diseases. Due to the rising incidence of knee pathologies, the number of knee X-rays acquired is also increasing. Such X-rays are obtained for the diagnosis of knee injuries, the evaluation of the knee before and after surgery, and the monitoring of the knee joint's stability. These types of diagnosis and monitoring of the knee usually involve radiography under physical stress. This widely used medical tool provides a more objective analysis of the measurement of the knee laxity than a physical examination does, involving knee stress tests, such as valgus, varus, and Lachman. Despite being an improvement to physical examination regarding the physician's bias, stress radiography is still performed manually in a lot of healthcare facilities. To avoid exposing the physician to radiation and to decrease the number of X-ray images rejected due to inadequate positioning of the patient or the presence of artefacts, positioning systems for stress radiography of the knee have been developed. This review analyses knee positioning systems for X-ray environment, concluding that they have improved the objectivity and reproducibility during stress radiographs, but have failed to either be radiolucent or versatile with a simple ergonomic set-up.

2022

A kinesthetic teaching approach for automating micropipetting repetitive tasks

Autores
Rocha, C; Dias, J; Moreira, AP; Veiga, G; Costa, P;

Publicação
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

Abstract
Nowadays, a laboratory operator in the areas of chemistry, biology or medicine spends considerable time performing micropipetting procedures, a common, monotonous and repetitive task which compromises the ergonomics of individuals, namely related to wrist musculoskeletal disorders. In this work, the design of a kinesthetic teaching approach for automating the micropipetting technique is presented, allowing to redirect the operator to other non-repetitive tasks, aiming to reduce the exposure to ergonomic risks. The proposed robotic solution has an innovative gripping system capable of supporting, actuating and regulating the volume of a manual micropipette. The system is able to configure the position of diverse laboratory materials, such as lab containers and plates, on the workbench through a collaborative robotic arm, providing flexibility to adapt to different procedures. A projected human-machine interface, which combines the display of information on the workbench with an infrared based interaction device was developed, providing a more intuitive interaction between the operator and the system during the configuration and operation phases. In contrast to the majority of the existing liquid handling systems, the proposed system allows the operator to place the materials freely on the workbench and the usage of different materials' variants, facilitating the implementation of the system in any laboratory. The attained performance and ease of use of the system were very encouraging since all the defined tasks in the conducted experiments were successfully performed by users with minimum training, highlighting its potential inclusion in the laboratory routine panorama.

2022

Gerber File Parsing for Conversion to Bitmap Image-The VINCI7D Case Study

Autores
Sousa, RB; Rocha, C; Mendonca, HS; Moreira, AP; Silva, MF;

Publicação
IEEE ACCESS

Abstract
The technological market is increasingly evolving as evidenced by the innovative and streamlined manufacturing processes. Printed Circuit Boards (PCB) are widely employed in the electronics fabrication industry, resorting to the Gerber open standard format to transfer the manufacturing data. The Gerber format describes not only metadata related to the manufacturing process but also the PCB image. To be able to map the electronic circuit pattern to be printed, a parser to convert Gerber files into a bitmap image is required. The current literature as well as available Gerber viewers and libraries showed limitations mainly in the Gerber format support, focusing only on a subset of commands. In this work, the development of a recursive descent approach for parsing Gerber files is described, outlining its interpretation and the renderization of 2D bitmap images. All the defined commands in the specification based on Gerber X2 generation were successfully rendered, unlike the tested commercial parsers used in the experiments. Moreover, the obtained results were comparable to those parsers regarding the commands they can execute as well as the ground-truth, emphasizing the accuracy of the proposed approach. Its top-down and recursive architecture allows easy integration with other software regardless of the platform, highlighting its potential inclusion and integration in the production of electronic circuits.

Teses
supervisionadas

2022

Transportation management in an era of big data: from data to knowledge

Autor
Pedro Francisco Mendes Bessa

Instituição
UP-FEUP

2022

Development of a Knee Positioning System for X-ray Environment

Autor
Catarina Oliveira Lopes

Instituição
UP-FEUP