Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Mestre em Bioengenharia com especialização em Engenharia Biomédica pela Faculdade de Engenharia da Universidade do Porto, Portugal. O meu projeto de dissertação culminou no desenvolvimento de um sistema robótico autónomo capaz de executar tarefas repetitivas em ambiente laboratorial. Neste contexto surgiu o interesse pelo ramo da robótica, no qual pretendi integrar e adquirir mais conhecimentos em áreas como mecânica, eletrónica, ciências da computação e biomédica. Em Setembro de 2016 integrei o grupo CRIIS pertencente ao INESC TEC como engenheira de I&D no desenvolvimento de novas soluções robóticas para responder a necessidades industriais. As minhas principais atividades incluem modelação de sistemas mecânicos e desenvolvimento eletrónico e de software. 

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Cláudia Daniela Rocha
  • Cargo

    Investigador
  • Desde

    01 fevereiro 2016
024
Publicações

2025

Automated optical system for quality inspection on reflective parts

Autores
Nascimento, R; Rocha, CD; Gonzalez, DG; Silva, T; Moreira, R; Silva, MF; Filipe, V; Rocha, LF;

Publicação
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

Abstract
The growing demand for high-quality components in various industries, particularly in the automotive sector, requires advanced and reliable inspection methods to maintain competitive standards and support innovation. Manual quality inspection tasks are often inefficient and prone to errors due to their repetitive nature and subjectivity, which can lead to attention lapses and operator fatigue. The inspection of reflective aluminum parts presents additional challenges, as uncontrolled reflections and glare can obscure defects and reduce the reliability of conventional vision-based methods. Addressing these challenges requires optimized illumination strategies and robust image processing techniques to enhance defect visibility. This work presents the development of an automated optical inspection system for reflective parts, focusing on components made of high-pressure diecast aluminum used in the automotive industry. The reflective nature of these parts introduces challenges for defect detection, requiring optimized illumination and imaging methods. The system applies deep learning algorithms and uses dome light to achieve uniform illumination, enabling the detection of small defects on reflective surfaces. A collaborative robotic manipulator equipped with a gripper handles the parts during inspection, ensuring precise positioning and repeatability, which improves both the efficiency and effectiveness of the inspection process. A flow execution-based software platform integrates all system components, enabling seamless operation. The system was evaluated with Schmidt Light Metal Group using three custom datasets to detect surface porosities and inner wall defects post-machining. For surface porosity detection, YOLOv8-Mosaic, trained with cropped images to reduce background noise, achieved a recall value of 84.71% and was selected for implementation. Additionally, an endoscopic camera was used in a preliminary study to detect defects within the inner walls of holes. The industrial trials produced promising results, demonstrating the feasibility of implementing a vision-based automated inspection system in various industries. The system improves inspection accuracy and efficiency while reducing material waste and operator fatigue.

2025

Quality Inspection in Casting Aluminum Parts: A Machine Vision System for Filings Detection and Hole Inspection

Autores
Nascimento, R; Ferreira, T; Rocha, CD; Filipe, V; Silva, MF; Veiga, G; Rocha, LF;

Publicação
J. Intell. Robotic Syst.

Abstract
Quality inspection inspection systems are critical for maintaining product integrity. Being a repetitive task, when performed by operators only, it can be slow and error-prone. This paper introduces an automated inspection system for quality assessment in casting aluminum parts resorting to a robotic system. The method comprises two processes: filing detection and hole inspection. For filing detection, five deep learning modes were trained. These models include an object detector and four instance segmentation models: YOLOv8, YOLOv8n-seg, YOLOv8s-seg, YOLOv8m-seg, and Mask R-CNN, respectively. Among these, YOLOv8s-seg exhibited the best overall performance, achieving a recall rate of 98.10%, critical for minimizing false negatives and yielding the best overall results. Alongside, the system inspects holes, utilizing image processing techniques like template-matching and blob detection, achieving a 97.30% accuracy and a 2.67% Percentage of Wrong Classifications. The system improves inspection precision and efficiency while supporting sustainability and ergonomic standards, reducing material waste and reducing operator fatigue. © The Author(s) 2025.

2025

From Competition to Classroom: A Hands-on Approach to Robotics Learning

Autores
Lopes, MS; Ribeiro, JD; Moreira, AP; Rocha, CD; Martins, JG; Sarmento, JM; Carvalho, JP; Costa, PG; Sousa, RB;

Publicação
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
Robotics education plays a crucial role in developing STEM skills. However, university-level courses often emphasize theoretical learning, which can lead to decreased student engagement and motivation. In this paper, we tackle the challenge of providing hands-on robotics experience in higher education by adapting a mobile robot originally designed for competitions to be used in laboratory classes. Our approach integrates real-world robot operation into coursework, bridging the gap between simulation and physical implementation while maintaining accessibility. The robot's software is developed using ROS, and its effectiveness is assessed through student surveys. The results indicate that the platform increases student engagement and interest in robotics topics. Furthermore, feedback from teachers is also collected and confirmed that the platform boosts students' confidence and understanding of robotics.

2025

Post-stroke upper limb rehabilitation: clinical practices, compensatory movements, assessment, and trends

Autores
Rocha, CD; Carneiro, I; Torres, M; Oliveira, HP; Pires, EJS; Silva, MF;

Publicação
PROGRESS IN BIOMEDICAL ENGINEERING

Abstract
Stroke, a vascular disorder affecting the nervous system, is the third-leading cause of death and disability combined worldwide. One in every four people aged 25 and older will face the consequences of this condition, which typically causes loss of limb function, among other disabilities. The proposed review analyzes the mechanisms of stroke and their influence on the disease outcome, highlighting the critical role of rehabilitation in promoting recovery of the upper limb (UL) and enhancing the quality of life of stroke survivors. Common outcome measures and the specific targeted UL features are described, along with emerging supplementary therapies found in the literature. Stroke survivors often develop compensatory strategies to cope with limitations in UL function, which must be detected and corrected during rehabilitation to facilitate long-term recovery. Recent research on the automated detection of compensatory movements has explored pressure, wearable, marker-based motion capture systems, and vision sensors. Although current approaches have certain limitations, they establish a strong foundation for future innovations in post-stroke UL rehabilitation, promoting a more effective recovery.

2025

Developing a Serious Video Game to Engage the Upper Limb Post-Stroke Rehabilitation

Autores
Silva, JA; Silva, MF; Oliveira, HP; Rocha, CD;

Publicação
Applied Sciences

Abstract
Stroke often leads to severe motor impairment, especially in the upper limbs, greatly reducing a patient’s ability to perform daily tasks. Effective rehabilitation is essential to restore function and improve quality of life. Traditional therapies, while useful, may lack engagement, leading to low motivation and poor adherence. Gamification—using game-like elements in non-game contexts—offers a promising way to make rehabilitation more engaging. The authors explore a gamified rehabilitation system designed in Unity 3D using a Kinect V2 camera. The game includes key features such as adjustable difficulty, real-time and predominantly positive feedback, user friendliness, and data tracking for progress. The evaluations were conducted with 18 healthy participants, most of whom had prior virtual reality experience. About 77% found the application highly motivating. While the gameplay was well received, the visual design was noted as lacking engagement. Importantly, all users agreed that the game offers a broad range of difficulty levels, making it accessible to various users. The results suggest that the system has strong potential to improve rehabilitation outcomes and encourage long-term use through enhanced motivation and interactivity.

Teses
supervisionadas

2022

Development of a Knee Positioning System for X-ray Environment

Autor
Catarina Oliveira Lopes

Instituição
UP-FEUP

2022

Serious games for hand and wrist rehabilitation

Autor
Jacinta Dias Ferreira

Instituição
UP-FEUP