Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2023

A DEA Approach to Evaluate the Performance of the Electric Mobility Deployment in European Countries

Autores
Vaz, B; Ferreira, P;

Publicação
Springer Proceedings in Mathematics and Statistics

Abstract
This work aims to assess the performance of European countries on the deployment of low-emission vehicles in road transportation. For this purpose, a model based on Data Envelopment Analysis (DEA) is used to calculate a composite indicator for several European countries, aggregating seven sub-indicators built from a data set for the 2019 year. Various virtual weight restrictions schemes of the sub-indicators are studied to explore the robustness of the performance results. By adopting the most robust scheme, the performance results obtained indicate that most European countries have the potential to improve their practices towards better road transport sustainability, by emulating the best practices observed in the four identified benchmarks. Thus, the inefficient countries should take measures to better support the market share of plug-in electric vehicles. In addition, the railway sector and the penetration of renewable energies should be enhanced to improve road transportation sustainability. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2023

Summarization of Massive RDF Graphs Using Identifier Classification

Autores
dos Santos, AF; Leal, JP;

Publicação
GRAPH-BASED REPRESENTATION AND REASONING, ICCS 2023

Abstract
The size of massive knowledge graphs (KGs) and the lack of prior information regarding the schemas, ontologies and vocabularies they use frequently makes them hard to understand and visualize. Graph summarization techniques can help by abstracting details of the original graph to produce a reduced summary that can more easily be explored. Identifiers often carry latent information which could be used for classification of the entities they represent. Particularly, IRI namespaces can be used to classify RDF resources. Namespaces, used in some RDF serialization formats as a shortening mechanism for resource IRIs, have no role in the semantics of RDF. Nevertheless, there is often a hidden meaning behind the decision of grouping resources under a common prefix and assigning an alias to it. We improved on previous work on a namespace-based approach to KG summarization that classifies resources using their namespaces. Producing the summary graph is fast, light on computing resources and requires no previous domain knowledge. The summary graph can be used to analyze the namespace interdependencies of the original graph. We also present chilon, a tool for calculating namespace-based KG summaries. Namespaces are gathered from explicit declarations in the graph serialization, community contributions or resource IRI prefix analysis. We applied chilon to publicly available KGs, used it to generate interactive visualizations of the summaries, and discuss the results obtained.

2023

Scaling VR Video Conferencing

Autores
Dasari, M; Lu, E; Farb, MW; Pereira, N; Liang, I; Rowe, A;

Publicação
2023 IEEE CONFERENCE VIRTUAL REALITY AND 3D USER INTERFACES, VR

Abstract
Virtual Reality (VR) telepresence platforms are being challenged to support live performances, sporting events, and conferences with thousands of users across seamless virtual worlds. Current systems have struggled to meet these demands which has led to high-profile performance events with groups of users isolated in parallel sessions. The core difference in scaling VR environments compared to classic 2D video content delivery comes from the dynamic peer-to-peer spatial dependence on communication. Users have many pair-wise interactions that grow and shrink as they explore spaces. In this paper, we discuss the challenges of VR scaling and present an architecture that supports hundreds of users with spatial audio and video in a single virtual environment. We leverage the property of spatial locality with two key optimizations: (1) a Quality of Service (QoS) scheme to prioritize audio and video traffic based on users' locality, and (2) a resource manager that allocates client connections across multiple servers based on user proximity within the virtual world. Through real-world deployments and extensive evaluations under real and simulated environments, we demonstrate the scalability of our platform while showing improved QoS compared with existing approaches.

2023

Evaluation of Hands-Free VR Interaction Methods During a Fitts' Task: Efficiency and Effectiveness

Autores
Monteiro, P; Goncalves, G; Peixoto, B; Melo, M; Bessa, M;

Publicação
IEEE ACCESS

Abstract
Currently, it is standard to use tracked handheld controllers for interaction in immersive virtual reality (VR). However, since VR interactions are becoming more natural with hand tracking, it is important to provide hands-free alternatives for selection and system control tasks. As such, this study aims to provide an exploratory evaluation of the effectiveness and efficiency of commonly used hands-free interfaces in selection and system control tasks. Nine interaction methods were evaluated while performing a Fitts' law task with nine advanced users of VR in a within-subject experiment. We evaluated handheld controllers as a baseline, against head gaze, eye gaze, and voice commands for pointing at the targets, and dwell time and voice commands to confirm selections. We found that using eye gaze with a 500 ms dwell time proved to be the hand-free method with the highest performance, matching the handheld controllers and being preferred by users. The evaluation also showed that using a multimodal approach to selection, especially using the voice, decreases performance, but increases effectiveness. Moreover, we verified that Fitts' law can be applied to hands-free methods, but its usage is limited when the methods have very short travel times. We then suggest selections per minute as a more robust comparative performance metric. Further studies should expand the audience and interaction tasks and focus on the confirmatory method of selection.

2023

Images as Metadata: A New Perspective for Describing Research Data

Autores
Rodrigues, J; Teixeira Lopes, C;

Publicação
Journal of Library Metadata

Abstract
Indispensable in many contexts, images are fundamental in the tasks of representation and transmission of information. In the scientific context, images can be tools for researchers seeking to see their data properly managed. Research data management guides in this direction as it determines necessary phases in the life cycle of projects. The description phase is fundamental as it is an essential means for data context, safeguarding, and reuse. The description often occurs through metadata models composed of descriptors capable of attributing context. However, there is one common aspect: the values associated with these descriptors are always textual or numeric. Through studies and work developed over the last few years, we propose a new approach to description, where images can have a preponderant role in the description of data, assuming the role of metadata. We present several pieces of evidence, point out their challenges and determine the opportunities this new perspective can have in the research. Images have specific characteristics that can be leveraged in improving data description. Historical evidence establish that images have always been used and produced in research, yet their representational ability has never been harnessed to describe data and give more context to the scientific process. ©, Joana Rodrigues and Carla Teixeira Lopes. Published with license by Taylor & Francis Group, LLC.

2023

Clarification of the Present Understanding of the Assessment of an Organization’s Digital Readiness in SMEs

Autores
Silva R.; Mamede H.S.; Santos V.;

Publicação
Emerging Science Journal

Abstract
The role of digital transformation (DT) in economic development is a vital and recurring point of research. It is particularly relevant if we consider the high percentage of digital transformation initiatives that fail to deliver the expected results, particularly in Small and Medium Enterprises (SMEs). This paper analyzes what is needed to make this transformation successful from an implementation perspective and, simultaneously, from the standpoint of obtaining the company’s expected results. This phenomenon is even more critical to decipher and understand when we look at the small and medium enterprises that face more significant challenges due to the scarcity of resources and needed skills. This work reviews a large variety of models through an extensive systematic literature review (SLR) that assess the readiness and maturity of the digital transformation of enterprises, with a focus on SMEs, with its primary objectives being (1) to review the existing studies and models that assess an organization’s maturity and readiness in the context of digital transformation, focusing on SMEs; (2) to identify if there are gaps considering the importance of the SMEs; and (3) to propose a standardized set of dimensions that should always be considered in a digital transformation assessment. The outcome of this research provides an essential contribution by identifying apparent gaps in the assessment of digital transformation in SMEs and proposing a scalable and standardized set of categories and subcategories that can be used across any future assessment model. These contributions are even more relevant when referencing minimal deep research in the context of SMEs and Digital Transformation.

  • 474
  • 4206