2020
Autores
Yusuf, AA; Figueiredo, IP; Afsar, A; Burroughs, NJ; Pinto, AA; Oliveira, BMPM;
Publicação
MATHEMATICS
Abstract
We study the equilibria of an Ordinary Differencial Equation (ODE) system where CD4
2020
Autores
Nikoobakht, A; Aghaei, J; Shafie Khah, M; Catalao, JPS;
Publicação
IEEE TRANSACTIONS ON SMART GRID
Abstract
Wind power curtailment (WPC) occurs because of the non-correlation between wind power generation (WPG) and load, and also due to the fast sub-hourly variations of WPG. Recently, advances in energy storage technologies facilitate the use of bulk energy storage units (ESUs) to provide the ramping required to respond to fast sub-hourly variations of WPGs. To minimize the sub-hourly WPC probability, this paper addresses a generic continuous-time risk-based model for sub-hourly scheduling of energy generating units and bulk ESUs in the day-ahead unit commitment (UC) problem. Accordingly, the Bernstein polynomials are hosted to model the continuous-time risk-based UC problem with ESU constraints. Also, the proposed continuous-time risk-based model ensures that the generating units and ESUs track the sub-hourly variations of WPG, while the load and generation are balanced in each sub-hourly intervals. Finally, the performance of the proposed model is demonstrated by simulating the IEEE 24-bus Reliability and Modified IEEE 118-bus test systems.
2020
Autores
Camargo, C; Brancaliao, L; Goncalves, J; Lima, J; Ramos, M; Fernandes, L; Trovisco, M; Conde, M;
Publicação
PROCEEDINGS OF THE 2020 IEEE GLOBAL ENGINEERING EDUCATION CONFERENCE (EDUCON 2020)
Abstract
In this paper it is described a Pilot that took place at Emidio Garcia School from Braganca, Portugal. The presented Pilot is based on a Challenge based Learning Approach, being an activity of the RoboSTEAM - Integrating STEAM and Computational Thinking development by using robotics and physical devices - ERASMUS+ Project. In the presented educational experiment it were used physical devices, being chosen the mBot robot, programmed using Scratch. The presented challenges had as research question a global problem that was Wildfires. Student had to propose and to develop solutions based on the use of robots to prevent and fight wildfires. The students that participated in the experiment were secondary school students, from Spain and Portugal, with their background in technology and arts respectively. Previously to the experiment the involved students filled a STEM semantic Survey and during the experiments their performance was evaluated.
2020
Autores
Loureiro, G; Soares, L; Dias, A; Martins, A;
Publicação
FOURTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, ROBOT 2019, VOL 2
Abstract
This paper addresses the topic of emergency landing spot detection for Unmanned Aerial Vehicles (UAVs). During operation, the vehicle is susceptible to faults and must be able to predict the land spot able to ensure that the UAV will be able to land without damages and injuries to humans and structures. A method was developed, based on geometric features extracted from Light Detection And Ranging (LIDAR) data. A simulation environment was developed in order to validate the effectiveness and the robustness of the proposed method.
2020
Autores
Carneiro, I; Carvalho, S; Henrique, R; Oliveira, L; Tuchin, VV;
Publicação
TISSUE OPTICS AND PHOTONICS
Abstract
The interest of using light in clinical practice is increasing strongly and many applications work at various wavelengths from the ultraviolet to the infrared. Due to this great range of applications, the determination of the optical properties of biological tissues in a wide spectral range becomes of interest. The liver is an important organ, since it has a major role in the human body and various pathologies are known to develop within it. For these reasons, this study concerns the estimation of the optical properties of human normal and pathological (metastatic carcinoma) liver tissues between 200 and 1000 nm. The obtained optical properties present the expected wavelength dependencies for both tissues - the refractive index, the absorption and the scattering coefficients decrease with the wavelength and the anisotropy and light penetration depth increase with the wavelength. Although similar behavior was observed for the various properties between the normal and pathological tissues, evidence of smaller blood content in the pathological tissues was found. A possible explanation is that the cancer cells destroy liver's vasculature and internal architecture, providing though a reduction in the blood content. For low wavelengths, it was observed a matching between the scattering and the reduced scattering coefficients, which implies a nearly zero anisotropy in that range. The scattering coefficient decreases from nearly 140 cm(-1) (at 200 nm) to 80 cm(-1) (at 1000 nm) for the normal liver and from nearly 140 cm(-1) (at 200 nm) to 95 cm(-1) (at 1000 nm) for the pathological tissue.
2020
Autores
Barreto, L; Amaral, A; Baltazar, S;
Publicação
Studies in Computational Intelligence
Abstract
The planning and design of sustainable and smart cities—cities of the future—should properly address the challenges that arise by the every day growth of the urban population. Mobility is an important issue considering social inclusion and the sustainable development of such cities. Thus, future mobility will have an increased importance when having to plan and design the cities of tomorrow. A key component of any future mobility and its metabolism is what is known as Mobility as a Service (MaaS), representing emerging opportunities from any type or mode of transportation in future cities. Through an empirical and explorative research methodology, this chapter presents the main issues and characteristics that any future MaaS should consider. Concluding, some features and trends are presented that should be considered in the development of future MaaS systems, allowing a more convenient provision of sustainable, versatile and attractive mobility services. © 2020, Springer Nature Switzerland AG.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.